Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 5, pp 1539–1544 | Cite as

Wavelet Transformation and Wigner-Husimi Distribution Function

  • Li-Yun Hu
  • Hong-Yi Fan
Article

Abstract

We find that the optical wavelet transformation can be used to study the Husimi distribution function in phase space theory of quantum optics. We prove that the Husimi distribution function of a quantum state |ψ〉 is just the modulus square of the wavelet transform of \(e^{-x^{2}/2}\) with ψ(x) being the mother wavelet up to a Gaussian function. Thus a convenient approach for calculating various Husimi distribution functions of miscellaneous quantum states is presented.

Keywords

Wavelet transformation Wigner-Husimi distribution function IWOP technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wigner, E.: Phys. Rev. 40, 749 (1932) MATHCrossRefADSGoogle Scholar
  2. 2.
    O’Connell, R.F., Wigner, E.P.: Phys. Lett. A 83, 145 (1981) CrossRefADSGoogle Scholar
  3. 3.
    Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Phys. Rep. 106, 121 (1984) CrossRefADSGoogle Scholar
  4. 4.
    Vogel, K., Risken, H.: Phys. Rev. A 40, 2847 (1989) CrossRefADSGoogle Scholar
  5. 5.
    Agawal, G.S., Wolf, E.: Phys. Rev. D 2, 2161 (1972) CrossRefADSGoogle Scholar
  6. 6.
    Agawal, G.S., Wolf, E.: Phys. Rev. D 2, 2187 (1972) CrossRefADSGoogle Scholar
  7. 7.
    Agawal, G.S., Wolf, E.: Phys. Rev. D 2, 2206 (1972) CrossRefADSGoogle Scholar
  8. 8.
    Bužek, V., Knight, P.L.: Prog. Opt. 34, 1 (1995) CrossRefGoogle Scholar
  9. 9.
    Bužek, V., Keitel, C.H., Knight, P.L.: Phys. Rev. A 51, 2575 (1995) CrossRefADSGoogle Scholar
  10. 10.
    Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis, New York (2003) Google Scholar
  11. 11.
    Husimi, K.: Proc. Phys. Math. Soc. Jpn. 22, 264 (1940) MATHGoogle Scholar
  12. 12.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) MATHGoogle Scholar
  13. 13.
    Kaiser, G.: A Friendly Guide to Wavelets. Birkhäuser, Basel (1994) MATHGoogle Scholar
  14. 14.
    Chui, C.K.: An Introduction to Wavelets. Academic Press, San Diego (1992) MATHGoogle Scholar
  15. 15.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford U. Press, London (1958) MATHGoogle Scholar
  16. 16.
    Orszag, M.: Quantum Optics. Springer, Berlin (2000) MATHGoogle Scholar
  17. 17.
    Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994) MATHGoogle Scholar
  18. 18.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Berlin (2001) MATHCrossRefGoogle Scholar
  19. 19.
    Fan, H.-Y., Lu, H.-L., Fan, Y.: Ann. Phys. 321, 480 (2006) MATHCrossRefADSGoogle Scholar
  20. 20.
    Hu, L., Fan, H.: Int. J. Theor. Phys. 47, 1058 (2008) MATHCrossRefGoogle Scholar
  21. 21.
    Wünsche, A.: J. Opt. B, Quantum Semiclass. Opt. 1, R11 (1999) CrossRefGoogle Scholar
  22. 22.
    Fan, H.-Y.: J. Opt. B, Quantum Semiclass. Opt. 5, R147 (2003) CrossRefADSGoogle Scholar
  23. 23.
    Fan, H.-Y., Lu, H.-L.: Opt. Lett. 31, 407 (2006) CrossRefADSGoogle Scholar
  24. 24.
    Walls, D.F.: Nature 324, 210 (1986) CrossRefADSGoogle Scholar
  25. 25.
    Loudon, R., Knight, P.L.: J. Mod. Opt. 34, 709 (1987) MATHCrossRefADSGoogle Scholar
  26. 26.
    Dodonov, V.V.: J. Opt. B, Quantum Semiclass. Opt. 4, R1–R33 (2002) CrossRefADSGoogle Scholar
  27. 27.
    Mehta, C.L.: Phys. Rev. Lett. 18, 752 (1967) CrossRefADSGoogle Scholar
  28. 28.
    Klauder, J.R., Skargerstam, B.S.: Coherent States. World Scientific, Singapore (1985) MATHGoogle Scholar
  29. 29.
    Glauber, R.J.: Phys. Rev. 130, 2529 (1963) CrossRefADSGoogle Scholar
  30. 30.
    Weyl, H.: Z. Phys. 46, 1 (1927) ADSGoogle Scholar
  31. 31.
    Fan, H.-Y.: Ann. Phys. (2007). doi: 10.1016/j.aop.2007.06.003 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.Department of PhysicsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations