Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 5, pp 1431–1435 | Cite as

Towards Nonlinear Quantum Fokker-Planck Equations

  • Roumen Tsekov
Article

Abstract

It is demonstrated how the equilibrium semiclassical approach of Coffey et al. can be improved to describe more correctly the evolution. As a result a new semiclassical Klein-Kramers equation for the Wigner function is derived, which remains quantum for a free quantum Brownian particle as well. It is transformed to a semiclassical Smoluchowski equation, which leads to our semiclassical generalization of the classical Einstein law of Brownian motion derived before. A possibility is discussed how to extend these semiclassical equations to nonlinear quantum Fokker-Planck equations based on the Fisher information.

Keywords

Nonlinear quantum Fokker-Planck equations Thermo-quantum diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alicki, R., Messer, J.: J. Stat. Phys. 32, 299 (1983) MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Ancona, M.G., Iafrate, G.J.: Phys. Rev. B 39, 9536 (1989) CrossRefADSGoogle Scholar
  3. 3.
    Chavanis, P.H.: Physica A 332, 89 (2004) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Coffey, W.T., Kalmykov, Yu.P., Titov, S.V., Mulligan, B.P.: J. Phys. A Math. Theor. 40, F91 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Doebner, H.D., Goldin, G.A.: J. Phys. A Math. Gen. 27, 1771 (1994) MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Frank, T.D.: Nonlinear Fokker-Planck Equations. Springer, Berlin (2005) MATHGoogle Scholar
  7. 7.
    Frieden, B.R.: Physics from Fisher Information. Cambridge University Press, Cambridge (1998) Google Scholar
  8. 8.
    Reginatto, M.: Phys. Rev. A 58, 1775 (1998) CrossRefADSGoogle Scholar
  9. 9.
    Sonego, S.: Found. Phys. 21, 1135 (1991) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Tsekov, R.: J. Phys. A Math. Theor. 40, 10945 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Tsekov, R.: J. Int. Theor. Phys. 48, 212 (2009) Google Scholar
  12. 12.
    Tsekov, R.: J. Int. Theor. Phys. 48, 223 (2009) Google Scholar
  13. 13.
    von Weizsäcker, C.F.: Z. Phys. 96, 431 (1935) MATHCrossRefADSGoogle Scholar
  14. 14.
    Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.DWIRWTHAachenGermany

Personalised recommendations