International Journal of Theoretical Physics

, Volume 48, Issue 2, pp 579–606 | Cite as

Nonholonomic Ricci Flows, Exact Solutions in Gravity, and Symmetric and Nonsymmetric Metrics



We provide a proof that nonholonomically constrained Ricci flows of (pseudo) Riemannian metrics positively result into nonsymmetric metrics (as explicit examples, we consider flows of some physically valuable exact solutions in general relativity). There are constructed and analyzed three classes of solutions of Ricci flow evolution equations defining nonholonomic deformations of Taub NUT, Schwarzschild, solitonic and pp-wave symmetric metrics into nonsymmetric ones.


Nonsymmetric metrics Nonholonomic manifolds Nonlinear connections Nonholonomic Ricci flows Taub NUT spacetimes Solitons in gravity pp-Waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hamilton, R.S.: Three manifolds of positive Ricci curvature. J. Diff. Geom. 17, 255–306 (1982) MATHMathSciNetGoogle Scholar
  2. 2.
    Hamilton, R.S.: The formation of singularities in the Ricci flow. Surveys in Differential Geometry, vol. 2, pp. 7–136. International Press, Somerville (1995) Google Scholar
  3. 3.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159 (2002)
  4. 4.
    Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math.DG/0309109 (2003)
  5. 5.
    Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245 (2003)
  6. 6.
    Cao, H.-D., Zhu, X.-P.: Hamilton–Perelman’s proof of the Poincare conjecture and the geometrization conjecture. Asian J. Math. 10, 165–495 (2006). arXiv:math.DG/0612069 MATHMathSciNetGoogle Scholar
  7. 7.
    Cao, H.-D., Chow, B., Chu, S.-C., Yau, S.-T. (eds.): Collected Papers on Ricci Flow. International Press, Somerville (2003) MATHGoogle Scholar
  8. 8.
    Kleiner, B., Lott, J.: Notes on Perelman’s papers. arXiv:math.DG/0605667 (2006)
  9. 9.
    Morgan, J.W., Tian, G.: Ricci flow and the Poincare conjecture. arXiv:math.DG/0607607 (2006)
  10. 10.
    Vacaru, S.: Nonholonomic Ricci flows: I. Riemann metrics and Lagrange–Finsler geometry. arXiv:math.dg/0612162 (2006)
  11. 11.
    Vacaru, S.: Nonholonomic Ricci flows: II. Evolution equations and dynamics. J. Math. Phys. 49, 043504 (2008) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Vacaru, S.: Finsler and Lagrange geometries in Einstein and string gravity. Int. J. Geom. Methods. Mod. Phys. (IJGMMP) 5, 473–511 (2008) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Miron, R., Anastasiei, M.: Vector Bundles and Lagrange Spaces with Applications to Relativity. Geometry Balkan Press, Bucharest (1997). Translation from Romanian of Editura Academiei Romane (1987) MATHGoogle Scholar
  14. 14.
    Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications, FTPH no. 59. Kluwer Academic, Dordrecht, Boston, London (1994) Google Scholar
  15. 15.
    Moffat, J.W.: New theory of gravity. Phys. Rev. D 19, 3554–3558 (1979) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Moffat, J.W.: Nonsymmetric gravitational theory. Phys. Lett. B 355, 447–452 (1995) MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Einstein, A.: Einheitliche Fieldtheorie von Gravitation and Electrizidät, Sitzungsberichte der Preussischen Akademie Wissebsgaften, pp. 414–419. Mathematischn-Naturwissenschaftliche Klasse (1925) translated in English by A. Unzicker and T. Case, Unified Field Theory of Gravitation and Electricity, session report from July 25, 1925, pp. 214–419. ArXiv:physics/0503046 and
  18. 18.
    Einstein, A.: A generalization of the relativistic theory of gravitation. Ann. of Math. 46, 578–584 (1945) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Eisenhart, L.P.: Generalized Riemann spaces. I. Proc. Natl. Acad. USA 37, 311–314 (1951) MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Eisenhart, L.P.: Generalized Riemann spaces. II. Proc. Natl. Acad. USA 38, 505–508 (1952) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Miron, R., Atanasiu, G.: Existence et arbitrariete des connexions compatibles a une structure Riemann genarilise du type presque k-horsympletique metrique. Kodai Math. J. 6, 228–237 (1983) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Atanasiu, G., Hashiguchi, M., Miron, R.: Supergeneralized Finsler Spaces. Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. & Chem.) 18, 19–34 (1985) MATHMathSciNetGoogle Scholar
  23. 23.
    Moffat, J.W.: Review of nonsymmetric gravitational theory. In: Mann, R.B., Wesson, P. (eds.) Proceedings of the Summer Institute on Gravitation, Banff Centre, Banff, Canada. World Scientific, Singapore (1991) Google Scholar
  24. 24.
    Moffat, J.W.: Nonsymmetric gravitational theory. J. Math. Phys. 36, 3722–3232 (1995). Erratum–ibid MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Moffat, J.W.: Noncommutative quantum gravity. Phys. Lett. B 491, 345–352 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Moffat, J.W.: Late-time inhomogeneity and acceleration without dark energy. J. Cosmol. Astropart. Phys. 0605, 001 (2006) CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Prokopec, T., Valkenburg, W.: The cosmology of the nonsymmetric theory of gravitation. Phys. Lett. B 636, 1–4 (2006) CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Vacaru, S.: Ricci flows and solitonic pp-waves. Int. J. Mod. Phys. A21, 4899–4912 (2006) ADSMathSciNetGoogle Scholar
  29. 29.
    Vacaru, S., Visinescu, M.: Nonholonomic Ricci flows and running cosmological constant. I. 4D Taub-NUT metrics. Int. J. Mod. Phys. A 22, 1135–1160 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Vacaru, S., Visinescu, M.: Nonholonomic Ricci flows and running cosmological constant: 3D Taub-NUT metrics. Rom. Rep. Phys. 60, 218–238 (2008). arXiv:gr-qc/0609086 Google Scholar
  31. 31.
    Vacaru, S.: Nonholonomic Ricci flows: IV. Geometric methods, exact solutions and gravity. arXiv:0705.0728 [math-ph] (2007)
  32. 32.
    Vacaru, S.: Nonholonomic Ricci flows: V. Parametric deformations of solitonic pp-waves and Schwarzschild solutions. arXiv:0705.0729 [math-ph] (2007)
  33. 33.
    Vacaru, S.: Einstein Gravity, Lagrange–Finsler Geometry and Nonsymmetric Metrics. arXiv:0806.06.3810 [gr-qc] (2008)
  34. 34.
    Vacaru, S., Stavrinos, P., Gaburov, E., Gonţa, D.: Clifford and Riemann-Finsler Structures in Geometric Mechanics and Gravity, Selected Works, Differential Geometry—Dynamical Systems, Monograph 7. Geometry Balkan Press, Bucharest (2006). and gr-qc/0508023 Google Scholar
  35. 35.
    Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Large N Phases, gravitational instantons, and the nuts and bolts of AdS holography. Phys. Rev. D 59, 064010 (1999) CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Alonso-Alberca, N., Meessen, P., Ortin, T.: Supersymmetry of topological Kerr–Newumann–Taub–NUT–AdS spacetimes. Class. Quantum Gravity 17, 2783–2798 (2000) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Mann, R., Stelea, C.: Nuttier (A)dS black holes in higher dimensions. Class. Quantum Gravity 21, 2937 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Peres, A.: Some gravitational waves. Phys. Rev. Lett. 3, 571–572 (1959) MATHCrossRefADSGoogle Scholar
  39. 39.
    Heusler, M.: Black Hole Uniqueness Theorems. Cambridge University Press, Cambridge (1996) MATHGoogle Scholar
  40. 40.
    Vacaru, S.: Horizons and geodesics of black ellipsoids. Int. J. Mod. Phys. D 12, 479–494 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Vacaru, S.: Perturbations and stability of black ellipsoids. Int. J. Mod. Phys. D 12, 461–478 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Vacaru, S.: Exact solutions with noncommutative symmetries in Einstein and gauge gravity. J. Math. Phys. 46, 042503 (2005) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.The Fields Institute for Research in Mathematical ScienceTorontoCanada

Personalised recommendations