Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 2, pp 507–515 | Cite as

Quantum Gates and Quantum Algorithms with Clifford Algebra Technique

  • M. Gregorič
  • N. S. Mankoč Borštnik
Article

Abstract

We use the Clifford algebra technique (J. Math. Phys. 43:5782, 2002; J. Math. Phys. 44:4817, 2003), that is nilpotents and projectors which are binomials of the Clifford algebra objects γ a with the property {γ a ,γ b }+=2η ab , for representing quantum gates and quantum algorithms needed in quantum computers in a simple and an elegant way. We identify n-qubits with the spinor representations of the group SO(1,3) for a system of n spinors. Representations are expressed in terms of products of projectors and nilpotents; we pay attention also on the nonrelativistic limit. An algorithm for extracting a particular information out of a general superposition of 2 n qubit states is presented. It reproduces for a particular choice of the initial state the Grover’s algorithm (Proc. 28th Annual ACM Symp. Theory Comput. 212, 1996).

Keywords

Clifford algebra Quantum gates Quantum algorithms Group SO(1,3) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mankoč Borštnik, N.S., Nielsen, H.B.: J. Math. Phys. 43, 5782 (2002), hep-th/0111257 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Mankoč Borštnik, N.S., Nielsen, H.B.: J. Math. Phys. 44, 4817 (2003), hep-th/0303224 MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Grover, L.K.: Proceedings, 28th Annual ACM Symposium on the Theory of Computing, vol. 212 (1996), quant-ph/9605043
  4. 4.
    Vlasov, A.Y.: Phys. Rev. A 63, 054302 (2001), arXiv:quant-ph/9907079 CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Somaroo, S.S., Cory, D.G., Havel, T.F.: Phys. Lett. A 240, 1 (1998) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gottesman, D.: Phys. Rev. A 65, 012314 (2001) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hestenes, D.: Space-time Algebra. Gordon and Breach, New York (1966) MATHGoogle Scholar
  8. 8.
    Mankoč Borštnik, N.S., Fonda, L., Borštnik, B.: Phys. Rev. 35, 4132 (1987) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations