International Journal of Theoretical Physics

, Volume 48, Issue 1, pp 150–157 | Cite as

Suppression of the Spiral Wave and Turbulence in the Excitability-Modulated Media



Periodical forcing is used to control the spiral wave and turbulence in the modified Fithzhugh-Nagumo equation (MFHNe) when excitability is changed. The decisive parameter ε of (MFHNe), which describes the ratio of time scales of the fast activator u and the slow inhibitor variable v, is supposed to increase linearly to simulate the excitability modulation in the media. In the numerical simulation, a local periodical stimulus is imposed on the left border of the media and the periods of external forcing are adjusted according to the approximate formula ω 1/ε 1/3 so that using the most appropriate frequency for the external forcing can approach a shorter transient period. It is found that the spiral wave and turbulence can be removed successfully by using an appropriate periodical forcing on the left border of the media. The mean activator and distribution of frequency of all the sites are also used to analyze the transition of spiral wave.


Spiral wave Turbulence Parameter shift and excitability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kapral, R., Showalter, K. (eds.): Chemical Waves and Patterns. Kluwer Academic, Dordrecht (1995) Google Scholar
  2. 2.
    Winfree, A.T.: When Time Breaks Down. Princeton University Press, Princeton (1987) Google Scholar
  3. 3.
    Bär, M., Brusch, L.: Breakup of spiral waves caused by radial dynamics: Eckhaus and finite wavenumber instabilities. New J. Phys. 6, 5 (2004) CrossRefADSGoogle Scholar
  4. 4.
    Fenton, F.H., Cherry, E.M., Hastings, H.M.: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12, 852 (2002) CrossRefADSGoogle Scholar
  5. 5.
    Mitkov, I., Aranson, I., Kessler, D.: Meandering instability of a spiral interface in the free boundary limit. Phys. Rev. E 54, 6065 (1996) CrossRefADSGoogle Scholar
  6. 6.
    Zhou, L.Q., Ouyang, Q.: Experimental studies on long-wavelength instability and spiral breakup in a reaction-diffusion system. Phys. Rev. Lett. 85, 1650 (2000) CrossRefADSGoogle Scholar
  7. 7.
    Sandstede, B., Scheel, A.: Absolute versus convective instability of spiral waves. Phys. Rev. E 62, 7708 (2000) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature (Lond.) 225, 535 (1970) CrossRefADSGoogle Scholar
  9. 9.
    Marts, B., Martinez, K., Lin, A.L.: Front dynamics in an oscillatory bistable Belousov-Zhabotinsky chemical reaction. Phys. Rev. E 70, 056223 (2004) CrossRefADSGoogle Scholar
  10. 10.
    Tung, C.K., Chan, C.K.: Dynamics of spiral waves under phase feedback control in a Belousov-Zhabotinsky reaction. Phys. Rev. Lett. 89, 248302 (2002) CrossRefADSGoogle Scholar
  11. 11.
    Liao, H.M., Zhou, L.Q., Zhang, C.X., et al.: Wave grouping of a meandering spiral induced by Doppler effects and oscillatory dispersion. Phys. Rev. Lett. 95, 238301 (2005) CrossRefADSGoogle Scholar
  12. 12.
    Shajahan, T.K., Sinha, S., Pandit, R.: Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue. Phys. Rev. E 75, 011929 (2007) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Bernus, O., Verschelde, H., Panfilov, A.V.: Spiral wave stability in cardiac tissue with biphasic restitution. Phys. Rev. E 68, 021917 (2003) CrossRefADSGoogle Scholar
  14. 14.
    Qu, Z.L., Weiss, J.N., Garfinkel, A.: From local to global spatiotemporal chaos in a cardiac tissue model. Phys. Rev. E 61, 727 (2000) CrossRefADSGoogle Scholar
  15. 15.
    Xie, F.G., Qu, Z.L., Weiss, J.N., Garfinkel, A.: Interactions between stable spiral waves with different frequencies in cardiac tissue. Phys. Rev. E 59, 2203 (1999) CrossRefADSGoogle Scholar
  16. 16.
    Roth, B.J.: Frequency locking of meandering spiral waves in cardiac tissue. Phys. Rev. E 57, R3735 (1998) CrossRefGoogle Scholar
  17. 17.
    Panfilov, A.V., Müller, S.C., Zykov, V.S.: Elimination of spiral waves in cardiac tissue by multiple electrical shocks. Phys. Rev. E 61, 4644 (2000) CrossRefADSGoogle Scholar
  18. 18.
    Schrader, A., Braune, M., Engel, H.: Dynamics of spiral waves in excitable media subjected to external periodic forcing. Phys. Rev. E 52, 98 (1995) CrossRefADSGoogle Scholar
  19. 19.
    Zhang, H., Hu, B.B., Hu, G.: Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. Phys. Rev. E 68, 026134 (2003) CrossRefADSGoogle Scholar
  20. 20.
    Zykov, V.S., Bordiougov, G., Brandtstädter, H., et al.: Periodic forcing and feedback control of nonlinear lumped oscillators and meandering spiral waves. Phys. Rev. E 68, 016214 (2003) CrossRefADSGoogle Scholar
  21. 21.
    Sakaguchi, H., Fujimoto, T.: Elimination of spiral chaos by periodic force for the Aliev-Panfilov model. Phys. Rev. E 67, 067202 (2003) CrossRefADSGoogle Scholar
  22. 22.
    Gray, R.A., Mornev, O.A., Jalife, J., et al.: Control of traveling waves in the mammalian cortex. Phys. Rev. Lett. 87, 168104 (2001) CrossRefADSGoogle Scholar
  23. 23.
    Mantel, R.M., Barkley, D.: Periodic forcing of spiral waves in excitable media. Phys. Rev. E 54, 4791 (1996) CrossRefADSGoogle Scholar
  24. 24.
    Zykov, V.S., Bordiougov, G., Brandtstädter, H., et al.: Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape. Phys. Rev. Lett. 92, 018304 (2004) CrossRefADSGoogle Scholar
  25. 25.
    Hu, G., Xiao, J.H., Chua, L.O., et al.: Controlling spiral waves in a model of two-dimensional arrays of Chua’s circuits. Phys. Rev. Lett. 80, 1884 (1998) CrossRefGoogle Scholar
  26. 26.
    Zykov, V.S., Mikhailov, A.S., Müller, S.C.: Controlling spiral waves in confined geometries by global feedback. Phys. Rev. Lett. 78, 3398 (1997) CrossRefADSGoogle Scholar
  27. 27.
    Grill, S., Zykov, V.S., Müller, S.C.: Feedback-controlled dynamics, of meandering spiral waves. Phys. Rev. Lett. 75, 3368 (1995) CrossRefADSGoogle Scholar
  28. 28.
    Karma, A., Zykov, V.S.: Structure of the resonance attractor for spiral waves in excitable media. Phys. Rev. Lett. 83, 2453 (1999) CrossRefADSGoogle Scholar
  29. 29.
    Kantrasiri, S., Jirakanjana, P., Kheowan, O.-U.: Dynamics of rigidly rotating spirals under periodic modulation of excitability. Chem. Phys. Lett. 416(4–6), 364 (2005) CrossRefADSGoogle Scholar
  30. 30.
    Bär, M., Gottschalk, N., Eiswirth, M., Ertl, G.: Spiral waves in a surface reaction: model. Calculations. J. Chem. Phys. 100, 1202 (1994) CrossRefADSGoogle Scholar
  31. 31.
    Hildebrand, M., Bär, M., Eiswirth, M.: Statistics of topological defects and spatiotemporal chaos in a reaction-diffusion system. Phys. Rev. Lett. 75, 1503 (1995) CrossRefADSGoogle Scholar
  32. 32.
    Margerit, D., Barkley, D.: Selection of twisted scroll waves in three-dimensional excitable media. Phys. Rev. Lett. 86, 175 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of ScienceLanzhou University of TechnologyLanzhouChina
  2. 2.Department of PhysicsCentral China Normal UniversityWuhanChina

Personalised recommendations