Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 1, pp 101–114 | Cite as

On the Ingredients of the Twin Paradox

  • T. Grandou
  • J. L. Rubin
Article

Abstract

If M is a 4-dimensional connected, orientable flat spacetime manifold endowed with a time-arrow, and if the existence of a finite speed limit to energy/information transfers over M can be assessed, then the “twin paradox” necessarily follows (and indeed, the full special relativity theory). Two other implicit ingredients of the paradox are also identified.

Keywords

Twin paradox Minkowski spacetime Causality Finite speed limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, S.L.: Einstein gravity as a symmetry breaking effect in quantum field theory. Rev. Mod. Phys. 54(3), 729–765 (1982) CrossRefADSGoogle Scholar
  2. 2.
    Aharoni, J.: The Special Theory of Relativity. Dover, New York (1965) MATHGoogle Scholar
  3. 3.
    Ashby, N.: Living Rev. Relativ. 6(1), 18 (2003). [Online Article]: cited on 28 January 2003, http://www.livingreviews.org/Articles/Volume6/2003-1ashby/ Google Scholar
  4. 4.
    Avez, A.: Essais de géometrie Riemannienne hyperbolique globale. Application à la relativité générale. Ann. Inst. Fourier 13(2), 105 (1963) MATHMathSciNetGoogle Scholar
  5. 5.
    Bacry, H.: Leçons sur la Théorie des Groupes. Gordon & Breach, New York (1967) Google Scholar
  6. 6.
    Bergson, H.: Duration and Simultaneity. Clinamen Press, Manchester (1999) Google Scholar
  7. 7.
    Bros, J.: Sémin. Poincaré 1, 99–154 (2005) Google Scholar
  8. 8.
    Coleman, B.: Eur. J. Phys. 24, 301 (2003) MATHCrossRefGoogle Scholar
  9. 9.
    Debs, T.A., Redhead, M.L.G.: Am. J. Phys. 64(4), 384 (1996) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Dingle, H.: What does relativity mean? Bull. Inst. Phys. 7, 314 (1956) Google Scholar
  11. 11.
    Eisberg, R.M.: Fundamentals of Modern Physics. Wiley, New York (1967) Google Scholar
  12. 12.
    de la Harpe, P.: Panor. Synth. 18, 39 (2004) Google Scholar
  13. 13.
    Lévay, P.: J. Phys. A Math. Gen. 37, 4593 (2004) MATHCrossRefADSGoogle Scholar
  14. 14.
    Lévy, J.: Relativité et Substratum Cosmique. Lavoisier, Paris (1996) Google Scholar
  15. 15.
    Lévy-Leblond, J.M.: Am. J. Phys. 44, 3 (1976). La relativité aujourd’hui: La Recherche 96(10), 30 (1979) CrossRefGoogle Scholar
  16. 16.
    MacKenzie, K.R.: Thomas precession and the clock paradox. Am. J. Phys. 40(11), 1661 (1972) CrossRefADSGoogle Scholar
  17. 17.
    Malament, D.: J. Math. Phys. 18, 1399 (1977) MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Malament, D.: In: Marcus, B., et al. (eds.) Logic, Methodology and Philosophy of Science VII, pp. 405–411. Elsevier, Amsterdam (1986) Google Scholar
  19. 19.
    Malament, D.: Classical relativity theory. In: Gabbay, D.M., Thagard, P., Woods, J. (eds.) Handbook of the Philosophy of Science. Philosophy of Physics, vol. 2. Elsevier, Amsterdam (2006) Google Scholar
  20. 20.
    Matolcsi, T., Goher, A.: Stud. Hist. Philos. Mod. Phys. 32(1), 83 (2001) CrossRefGoogle Scholar
  21. 21.
    Matolcsi, T., Matolcsi, M.: Int. J. Theor. Phys. 44, 63 (2005) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, p. 164. Freeman, New York (1973) Google Scholar
  23. 23.
    Pierseaux, Y.: Ann. Fond. Louis Broglie 29, 57 (2004) MathSciNetGoogle Scholar
  24. 24.
    Schild, A.: Am. Math. Mon. 66(1), 1 (1959) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Swiatecki, W.J.: Int. J. Mod. Phys. E 15(2), 275–283 (2006) CrossRefADSGoogle Scholar
  26. 26.
    Ungar, A.A.: Fundamental Theories of Physics, vol. 117. Kluwer, Dordrecht (2001) Google Scholar
  27. 27.
    Unruh, W.G.: Parallax distance, time, and the twin “paradox”. Am. J. Phys. 49(6), 589 (1981) CrossRefADSGoogle Scholar
  28. 28.
    Zeeman, E.C.: J. Math. Phys. 4, 490 (1963) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Weyl, H.: Space, Time, Matter. Dover, New York (1952) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut Non Linéaire de Nice UMR CNRS 6618ValbonneFrance

Personalised recommendations