Advertisement

Hawking Radiation from the Cylindrical Symmetric Black Hole via Covariant Anomaly

  • Xiao-Xiong Zeng
  • Shu-Zheng Yang
Article

Abstract

Hawking radiation from the cylindrical symmetric black hole, which is asymptotically anti-de Sitter not only in the transverse direction but also in the string or membrane direction, is discussed from the anomaly point of view. We implement the covariant anomaly cancellation method, the more refined formalism that was proposed by Banerjee and Kulkarni recently than the initial work of Robinson et al., to discuss the near-horizon gauge and gravitational anomalies. Our result shows that Hawking radiation from the cylindrical configurations with horizons also can be reproduced by the anomaly cancellation method.

Keywords

Hawking radiation Covariant anomaly Cylindrical symmetric black hole 

References

  1. 1.
    Strominger, A.: J. High Energy Phys. 10, 034 (2001) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 95, 011303 (2005) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Banerjee, R., Kulkarni, S.: Phys. Rev. D 77, 024018 (2008) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. Lett. 96, 151302 (2006) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Murata, K., Soda, J.: Phys. Rev. D 74, 044018 (2006) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Lett. B 647, 200 (2007) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Xiao, K., Liu, W.B., Zhang, H.B.: Phys. Lett. B 647, 482 (2007) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Xu, Z., Chen, B.: Phys. Rev. D 75, 02404 (2007) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Setare, M.R.: Euro. Phys. J. C. 49, 865 (2006) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Rev. D 75, 064029 (2007) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Jiang, Q.Q.: Class. Quantum Gravity 24, 4391 (2007) MATHCrossRefADSGoogle Scholar
  12. 12.
    Shin, H., Kim, W.: High Energy Phys. 06, 012 (2007) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Zeng, X.X., Hou, J.S., Yang, S.Z.: Pramana J. Phys. 70, 409 (2008) CrossRefADSGoogle Scholar
  14. 14.
    Iso, S., Morita, T., Umetsu, H.: J. High Energy Phys. 04, 068 (2007) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Lemos, J.P.S.: Phys. Lett. B 353, 46 (1995) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Cai, R.G., Zhang, Y.Z.: Phys. Rev. D 54, 4891 (1996) CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Lemos, J.P.S.: Class. Quantum Gravity 12, 1081 (1995) MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Bertlmann, R.: Anomalies in Quantum Field Theory. Oxford Sciences, Oxford (2000) Google Scholar
  19. 19.
    Bardeen, W.A., Zumino, B.: Nucl. Phys. B 244, 421 (1984) CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Bertlmann, R., Kohlprath, E.: Ann. Phys. (N.Y.) 288, 137 (2001) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. D 74, 044017 (2006) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsChina West Normal UniversityNanchongPeople’s Republic of China

Personalised recommendations