International Journal of Theoretical Physics

, Volume 47, Issue 11, pp 3075–3081 | Cite as

Conservation Laws and Associated Noether Type Vector Fields via Partial Lagrangians and Noether’s Theorem for the Liang Equation



We show how one can construct conservation laws of the Liang equation which is not variational but may be regarded as Euler-Lagrange in part. This first requires the determination of the Noether-type symmetries associated with the partial Lagrangian. The final construction of the conservation laws resort to a formula equivalent to Noether’s theorem. A variety of subclasses are given and, for each, a large number of conserved flows are found—the method is usable for any general choice of the variable speed of sound.


Inhomogeneous wave and Liang equation Noether-type symmetries Partial Lagrangians Conservation laws 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anco, S.C., Bluman, G.W.: Direct construction method for conservation laws of partial differential equations. Part II: General treatment. Eur. J. Appl. Math. 9, 567–585 (2002) MathSciNetGoogle Scholar
  2. 2.
    Carbonaro, P., Giambo, S.: Invariance properties and exact solutions of the Liang equation. Nuovo Cimento B 116(12), 1331–1352 (2001) ADSMathSciNetGoogle Scholar
  3. 3.
    Kara, A.H., Mahomed, F.M.: Relationship between symmetries and conservation laws. Int. J. Theor. Phys. 39, 23–40 (2000) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kara, A.H., Mahomed, F.M.: A basis of conservation laws for partial differential equations. J. Nonlin. Math. Phys. 9, 60–72 (2002) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Kara, A.H., Mahomed, F.M.: Noether-type symmetries and conservation laws via partial Lagrangians. Nonlinear Dyn. 45(3–4), 367–383 (2006) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Landau, L., Lifchitz, E.: Mé canique des fluides. Mir, Moscow (1967) Google Scholar
  7. 7.
    Liang, E.P.T.: Astrophys. J., 361 (1977) Google Scholar
  8. 8.
    Marwat, D.N.K., Kara, A.H., Mahomed, F.M.: Symmetries, conservation laws and multipliers via partial Lagrangians and Noether’s Theorem for classically non variational problems. Int. J. Theor. Phys. 46(12), 3022–3029 (2007) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Noether, E.: Invariante Variationsprobleme. Nachr. Akad. Wiss., Gött. Math.-Phys. Kl. 2, 235–257 (1918). (English translation in Transp. Theory Stat. Phys. 1(3), 186–207 (1971)) Google Scholar
  10. 10.
    Wolf, T.: A comparison of four approaches to the calculation of conservation laws. Eur. J. Appl. Math. 13, 129–152 (2002) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.School of MathematicsUniversity of the WitwatersrandWitsSouth Africa
  3. 3.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations