Advertisement

International Journal of Theoretical Physics

, Volume 47, Issue 9, pp 2344–2352 | Cite as

Early Universe in Scalar-Tensor Theory

  • C. P. Singh
  • A. Beesham
Article
  • 44 Downloads

Abstract

We consider the flat Robertson–Walker model in scalar-tensor theory proposed by Lau and Prokhovnik. In this model, the field equations are solved by using “gamma-law” form of equation of state p=(γ−1)ρ, where the adiabatic parameter ‘gamma’ (γ) varies continuously as the universe expands. Our aim is to study how the adiabatic parameter γ should vary so that in the course of its evolution the universe goes through a transition from an inflationary to a radiation-dominated phase. A unified one parameter function of γ has been considered to describe the two early phases of evolution of universe. The solutions show the power-law expansion and cosmological constant is found to be positive and decreasing function of cosmic time. The solutions are compatible with the Dirac’s large number hypothesis. The deceleration parameter has been presented in a unified manner in terms of scale factor, which describes the inflation of the model. The nature of singularity and the physical properties have been discussed in details.

Keywords

Cosmology Robertson–Walker models Inflationary phase Radiation-dominated phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel Rahman, A.-M.M.: Phys. Rev. D 45, 3497 (1992) CrossRefADSGoogle Scholar
  2. 2.
    Arbab, A.I.: Gen. Relativ. Gravit. 29, 61 (1997) MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Beesham, A.: Aust. J. Phys. 40, 23 (1987) ADSGoogle Scholar
  4. 4.
    Berman, M.S.: Phys. Rev. D 43, 1075 (1991) CrossRefADSGoogle Scholar
  5. 5.
    Berman, M.S.: Gen. Relativ. Gravit. 23, 465 (1991) CrossRefADSGoogle Scholar
  6. 6.
    Bertolami, O.: Nuovo Cimento B 93, 36 (1986) CrossRefADSGoogle Scholar
  7. 7.
    Bertolami, O.: Fortschr. Phys. 34, 829 (1986) Google Scholar
  8. 8.
    Carvalho, J.C., Lima, J.A.S., Waga, I.: Phys. Rev. 46, 2404 (1992) ADSGoogle Scholar
  9. 9.
    Carvalho, J.C.: Int. J. Theor. Phys. 35, 2019 (1996) MATHCrossRefGoogle Scholar
  10. 10.
    Chen, W., Wu, Y.S.: Phys. Rev. D 41, 695 (1990) CrossRefADSGoogle Scholar
  11. 11.
    Dirac, P.A.M.: Proc. R. Soc. Lond. A 165, 199 (1938) ADSGoogle Scholar
  12. 12.
    Dirac, P.A.M.: The General Theory of Relativity. New York, Wiley (1975) Google Scholar
  13. 13.
    Dirac, P.A.M.: Proc. R. Soc. Lond. A 365, 19 (1979) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Israelit, M., Rosen, N.: Astrophys. Space Sci. 204, 317 (1993) MATHCrossRefADSGoogle Scholar
  15. 15.
    Jordan, P.: Z. Phys. 157, 112 (1959) CrossRefADSGoogle Scholar
  16. 16.
    Lau, Y.K.: Aust. J. Phys. 38, 547 (1985) ADSGoogle Scholar
  17. 17.
    Lau, Y.K., Prokhovnik, S.J.: Aust. J. Phys. 39, 339 (1986) ADSGoogle Scholar
  18. 18.
    Lima, J.A.S., Maia, J.M.F.: Mod. Phys. Lett. A 48, 591 (1993) CrossRefADSGoogle Scholar
  19. 19.
    Maharaj, S.D., Beesham, A.: J. Astrophys. Astron. 9, 67 (1988) CrossRefADSGoogle Scholar
  20. 20.
    Maharaj, S.D., Naidoo, R.: Astrophys. Space Sci. 208, 261 (1993) MATHCrossRefADSGoogle Scholar
  21. 21.
    Overduin, J.M., Cooperstock, F.I.: Phys. Rev. D 58, 043506 (1998) CrossRefADSGoogle Scholar
  22. 22.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  23. 23.
    Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988) CrossRefADSGoogle Scholar
  24. 24.
    Riess, A.G., et al.: Astrophys. J. 116, 1009 (1998) Google Scholar
  25. 25.
    Singh, C.P.: Int. J. Theor. Phys. 45, 519 (2006) CrossRefGoogle Scholar
  26. 26.
    Singh, C.P.: Mod. Phys. Lett. A 21, 1803 (2006) MATHCrossRefADSGoogle Scholar
  27. 27.
    Singh, C.P.: Int. J. Mod. Phys. A 22, 2415 (2007) MATHCrossRefGoogle Scholar
  28. 28.
    Vishwakarma, R.G.: Mon. Not. R. Astron. Soc. 331, 776 (2002) CrossRefADSGoogle Scholar
  29. 29.
    Zeldovich, Y.B.: Sov. Phys. Usp. 11, 381 (1968) CrossRefADSGoogle Scholar
  30. 30.
    Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989) MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Applied MathematicsDelhi College of EngineeringDelhiIndia
  2. 2.Department of Mathematical SciencesUniversity of ZululandKwa-DlangezwaSouth Africa

Personalised recommendations