Advertisement

International Journal of Theoretical Physics

, Volume 47, Issue 7, pp 1966–1978 | Cite as

Curvature Inspired Cosmological Scenario

  • S. K. Srivastava
Article

Abstract

Using modified gravity with non-linear terms of curvature, R 2 and R (2+r) (with r being a positive real number and R being the scalar curvature), cosmological scenario, beginning at the Planck scale, is obtained. Here a unified picture of cosmology is obtained from f(R)-gravity. In this scenario, universe begins with power-law inflation followed by deceleration and acceleration in the late universe as well as possible collapse of the universe in future. It is different from f(R)-dark energy models with non-linear curvature terms assumed as dark energy. Here, dark energy terms are induced by linear as well as non-linear terms of curvature in Friedmann equation being derived from modified gravity. It is also interesting to see that, in this model, dark radiation and dark matter terms emerge spontaneously from the gravitational sector. It is found that dark energy, obtained here, behaves as quintessence in the early universe and phantom in the late universe. Moreover, analogous to brane-tension in brane-gravity inspired Friedmann equation, a tension term λ arises here being called as cosmic tension, It is found that, in the late universe, Friedmann equation (obtained here) contains a term −ρ 2/2λ (ρ being the phantom energy density) analogous to a similar term in Friedmann equation with loop quantum effects, if λ>0 and brane-gravity correction when λ<0.

Keywords

Modified gravity Dark energy Acceleration and deceleration of the universe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perlmutter, S.J., et al.: Astrophys. J. 517, 565 (1999). astro-ph/9812133 CrossRefADSGoogle Scholar
  2. 2.
    Spergel, D.N., et al.: Astrophys J. Suppl. 148, 175 (2003). astro-ph/0302209 and references therein CrossRefADSGoogle Scholar
  3. 3.
    Riess, A.G., et al.: Astrophys. J. 607, 665 (2004). astro-ph/0402512 CrossRefADSGoogle Scholar
  4. 4.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006). hep-th/0603057 and references therein MATHADSMathSciNetGoogle Scholar
  5. 5.
    Capozziello, S., Cardone, V.F., Carloni, S., Troisi, A.: Int. J. Mod. Phys. D 12, 1969 (2003) ADSGoogle Scholar
  6. 6.
    Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D 70, 043528 (2004) ADSGoogle Scholar
  7. 7.
    Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007). hep-th/0601213 and references therein MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Amendola, L., Polarski, D., Tsujikawa, S.: Phys. Rev. Lett. 98, 131302 (2007). astro-ph/0603703 CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Amendola, L., Polarski, D., Gannouji, R., Tsujikawa, S.: Phys. Rev. D 75, 083504 (2007). gr-qc/0612180 CrossRefADSGoogle Scholar
  10. 10.
    Srivastava, S.K.: astro-ph/0511167; astro-ph/0602116 Google Scholar
  11. 11.
    Srivastava, S.K.: Int. J. Mod. Phys. A 22(6), 1123–1134 (2007). hep-th/0605019 MATHCrossRefADSGoogle Scholar
  12. 12.
    Srivastava, S.K.: Phys. Lett. B 643, 1–4 (2006). astro-ph/0608241 ADSGoogle Scholar
  13. 13.
    Srivastava, S.K.: Phys. Lett. B 648, 119–126 (2007). astro-ph/0603601 ADSGoogle Scholar
  14. 14.
    Maartens, R.: gr-qc/0312059 Google Scholar
  15. 15.
    Sami, M., Singh, P., Tsujikawa, S.: Phys. Rev. D 74, 043514 (2006). gr-qc/0605113 ADSMathSciNetGoogle Scholar
  16. 16.
    Sahni, V., Shtanov, Y.: astro-ph/0202346 Google Scholar
  17. 17.
    Feng, B., Wang, X., Zhang, X.: Phys. Lett. B 607, 35 (2005). astro-ph/0404224 CrossRefADSGoogle Scholar
  18. 18.
    Miller, A.D., et al.: Astrophys. J. Lett. 524, L1 (1999) CrossRefADSGoogle Scholar
  19. 19.
    de Bernadis, P., et al.: Nature (London) 400, 955 (2000) CrossRefGoogle Scholar
  20. 20.
    Lange, A.E., et al.: Phys. Rev. D 63, 042001 (2001) CrossRefADSGoogle Scholar
  21. 21.
    Melchiorri, A., et al.: Astrophys. J. Lett. 536, L63 (2000) CrossRefADSGoogle Scholar
  22. 22.
    Hanay, S., et al.: Astrophys. J. Lett. 545, L5 (2000) CrossRefADSGoogle Scholar
  23. 23.
    Lahnas, A.B., Mavromatos, N.E., Nanopoulos, D.V.: Int. J. Mod. Phys. D 12(9), 1529 (2003) CrossRefADSGoogle Scholar
  24. 24.
    Srivastava, S.K., Sinha, K.P.: Phys. Lett. B 307, 40 (1993) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Srivastava, S.K., Sinha, K.P.: Pramana 44, 333 (1993) ADSGoogle Scholar
  26. 26.
    Srivastava, S.K., Sinha, K.P.: J. Ind. Math. Soc. 61, 80 (1994) MathSciNetGoogle Scholar
  27. 27.
    Srivastava, S.K., Sinha, K.P.: Int. J. Theor. Phys. 35, 135 (1996) MATHCrossRefGoogle Scholar
  28. 28.
    Srivastava, S.K., Sinha, K.P.: Mod. Phys. Lett. A 12, 2933 (1997) MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Srivastava, S.K.: Il Nuovo Cimento B 113, 1239 (1998) ADSGoogle Scholar
  30. 30.
    Srivastava, S.K.: Int. J. Mod. Phys. A 14, 875 (1999) MATHCrossRefADSGoogle Scholar
  31. 31.
    Srivastava, S.K.: Mod. Phys. Lett. A 14, 1021 (1999) CrossRefADSGoogle Scholar
  32. 32.
    Srivastava, S.K.: Int. J. Mod. Phys. A 15, 2917 (2000) MATHADSGoogle Scholar
  33. 33.
    Srivastava, S.K.: Pramana 60, 29 (2003) CrossRefADSGoogle Scholar
  34. 34.
    Srivastava, S.K.: hep-th/0404170; gr-qc/0510086 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsNorth Eastrn Hill UniversityShillongIndia

Personalised recommendations