Advertisement

International Journal of Theoretical Physics

, Volume 47, Issue 11, pp 2783–2806 | Cite as

Quantum Electrodynamics of Multiphoton Processes: Laser Physics, Thermal Radiation and Astrophysics

  • Mark E. Perel’man
Article
  • 50 Downloads

Abstract

QED description of multiphoton processes (MPP) requires special account of densities j(ω) of incident photons fluxes. The reaction rate of N -photon process in laser field is expressed via (j/j 0) N , where j 0=1/σ(ω)τ(ω) is the density of reactions saturation and/or the threshold of opening new channel of reaction, σ(ω) and τ(ω) are the cross-section of elastic scattering and its duration. The calculations lead to the known plateau in spectra of higher harmonics generations. Processes of multiphoton ionization require also determination of the duration of momentum accumulation τ(p) and reaction rate depends on its conformity with τ(N ω). The method is generalized onto temperature fields. It allows to consider phase transition of the first kind as radiative transition between two levels (gas and condensate) and to determine their thresholds as the function of temperature and latent heat; it predicts a characteristic emission of allocated latent heat. The second rich field for the MPP theory is astrophysics, in which they can explain some singularities of spectra of stars and nebulae bursts: disappearance or suppression of low-frequency parts of spectra via energy pumping into higher frequencies, narrowing of lines, etc. MPP of higher harmonics generation and pairs birth are possible also on vacuum loops.

Keywords

Multiphoton QED Thermal radiation Astrophysical spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agostini, P., DiMauro, L.F.: Rep. Prog. Phys. 67, 813 (2004) CrossRefADSGoogle Scholar
  2. 2.
    Amusia, M.Y.: Atomic Photoeffect. Plenum, New York (1990) Google Scholar
  3. 3.
    Bartels, R., et al.: Nature 406, 164 (2000) CrossRefADSGoogle Scholar
  4. 4.
    Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms. Springer, New York (1957) MATHGoogle Scholar
  5. 5.
    Blaschke, D.B., et al.: Phys. Rev. Lett. 96, 140402 (2006) CrossRefADSGoogle Scholar
  6. 6.
    Bohr, N., Rosenfeld, L.: Kgl. Danske Videnk Selskab. Math.-Fys. Medd. 12(8) (1933) Google Scholar
  7. 7.
    Brabec, T., Krauz, F.: Rev. Mod. Phys. 72, 545 (2000) CrossRefADSGoogle Scholar
  8. 8.
    Bula, Ch.: E144 Collaboration. SLAC-PUB-7219, Jul, 1995, 23 pp Google Scholar
  9. 9.
    Chang, Z., et al.: Phys. Rev. Lett. 79, 2967 (1997) CrossRefADSGoogle Scholar
  10. 10.
    Corcum, P.B.: Phys. Rev. Lett. 71, 1994 (1993) CrossRefADSGoogle Scholar
  11. 11.
    Dell’Anno, F., De Siena, S., Illuminati, F.: arXiv:quant-ph/0701050v1 (2007)
  12. 12.
    Einstein, A.: Phys. Z. 18, 121 (1917) Google Scholar
  13. 13.
    Einstein, A., Ehrenfest, P.: Z. Phys. 19, 301 (1923) CrossRefGoogle Scholar
  14. 14.
    Feller, W.: An Introduction to Probability Theory and its Applications. Chapman, New York (1961) Google Scholar
  15. 15.
    Fedotov, A.M., Narozhny, N.B.: Phys. Lett. A 362, 1 (2007) CrossRefADSGoogle Scholar
  16. 16.
    Fermi, E.: Suppl. Nuovo Cimento 2, 17 (1955) CrossRefGoogle Scholar
  17. 17.
    Gazibegović-Busuladžić, A., Milošević, D.B., Becker, W.: Phys. Rev. A 70, 053403 (2004) CrossRefADSGoogle Scholar
  18. 18.
    Gershberg, R.E., et al.: Astron. Astrophys. Suppl. Ser. 139, 555 (1999) CrossRefADSGoogle Scholar
  19. 19.
    Jeans, J.H.: Philos. Mag. 10, 91 (1905) Google Scholar
  20. 20.
    Jeans, J.H.: Philos. Mag. 17, 229 (1909) Google Scholar
  21. 21.
    Kaplan, A.E., Ding, Y.J.: Phys. Rev. A 62, 043805 (2000) CrossRefADSGoogle Scholar
  22. 22.
    Keldysh, L.V.: Sov. Phys. JETP 20, 1307 (1965) MathSciNetGoogle Scholar
  23. 23.
    Kuchiev, M.Y.: arXiv: 0706.3103 v1 (2007) Google Scholar
  24. 24.
    Kulander, K.C., Schafer, K.J., Krause, J.L.: In: Super-Intense Laser-Atom Physics. NATO ASI Series B, vol. 316, p. 95 (1993) Google Scholar
  25. 25.
    Landau, L.D.: Phys. Z. Sowjet. 1, 88 (1932); 2, 46 MATHGoogle Scholar
  26. 26.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics (Non-Relativistic Theory), 3rd edn. Pergamon, Oxford (1991) Google Scholar
  27. 27.
    Landau, L.D., Lifshitz, E.M., Pitaevski, L.P.: Statistical Physics, Part 2, 3rd edn. Butterworth-Heinemann, Washington (1980) Google Scholar
  28. 28.
    Low, F.: Phys. Rev. 88, 28 (1952) CrossRefGoogle Scholar
  29. 29.
    Mészáros, P.: Rep. Prog. Phys. 69, 2259 (2006) CrossRefGoogle Scholar
  30. 30.
    Muga, J.G., et al. (eds.): Time in Quantum Mechanics. Springer, New York (2002) MATHGoogle Scholar
  31. 31.
    Murdin, P.: Nature 329(#6134), 12 (1987) CrossRefADSGoogle Scholar
  32. 32.
    Peatross, J., Meyerhofer, D.D.: Phys. Rev. A 51, R-906 (1995) CrossRefADSGoogle Scholar
  33. 33.
    Perel’man, M.E.: Sov. Phys. JETP 31, 1155 (1970) ADSGoogle Scholar
  34. 34.
    Perel’man, M.E.: Sov. Phys. Dokl. 203, 1030 (1972) Google Scholar
  35. 35.
    Perel’man, M.E.: Astrophysics 17, 213 (1981) CrossRefADSGoogle Scholar
  36. 36.
    Perel’man, M.E.: Bull. Acad. Sci. Georgian SSR 128, 517 (1987) Google Scholar
  37. 37.
    Perel’man, M.E.: In: Mainfray, G., Agostini, P. (eds.) Multiphoton Processes, p. 155. CEA, Paris (1991) Google Scholar
  38. 38.
    Perel’man, M.E.: Philos. Mag. 87, 3129 (2007) CrossRefADSGoogle Scholar
  39. 39.
    Perel’man, M.E.: Int. J. Theor. Phys. 47, 468 (2008). MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Perel’man, M.E., Arutyunian, V.G.: Sov. Phys. JETP 35, 260 (1972) ADSGoogle Scholar
  41. 41.
    Perel’man, M.E., Tatartchenko, V.A.: Phys. Lett. A 372, 2480 (2008) ADSGoogle Scholar
  42. 42.
    Reiss, H.R.: Prog. Quantum Electron. 18, 17 (1992) Google Scholar
  43. 43.
    Salieres, P., et al.: Adv. At. Mol. Opt. Phys. 41, 89 (1999) Google Scholar
  44. 44.
    Scrinzi, A., et al.: J. Phys. B: At. Mol. Opt. Phys. 39, R1 (2006) CrossRefGoogle Scholar
  45. 45.
    Shan, B., Chang, Z.: Phys. Rev. A 65, R-011804 (2002) ADSGoogle Scholar
  46. 46.
    Umarov, L.M., Tatarchenko, V.A.: Sov. Phys. Crystallogr. 29, 670 (1984) Google Scholar
  47. 47.
    Voronov, S.L., et al.: Phys. Rev. Lett. 87, 133902 (2001) CrossRefADSGoogle Scholar
  48. 48.
    Zommerfeld, A.: Atombau und Spektrallinien, vol. 2. Braunschweig (1960) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Racah Institute of PhysicsHebrew UniversityJerusalemIsrael

Personalised recommendations