Advertisement

International Journal of Theoretical Physics

, Volume 47, Issue 6, pp 1699–1708 | Cite as

Femtosecond Pulse Propagation in Optical Fibers Under Higher Order Effects: A Collective Variable Approach

  • Shwetanshumala
  • Anjan Biswas
Article

Abstract

Employing collective variable approach, femtosecond pulse propagation has been investigated in optical fibers using the higher order nonlinear Schrödinger equation. In order to view the pulse dynamics along the propagation distance, variation of different pulse parameters, called collective variables, such as pulse amplitude, width, chirp, pulse center and frequency has been investigated by numerically solving the set of ordinary equations obtained from collective variable approach.

Keywords

Optical solitons Collective variables Soliton perturbation Optical fibers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hasegawa, A., Tappert, F.D.: Appl. Phys. Lett. 23, 142 (1973) CrossRefADSGoogle Scholar
  2. 2.
    Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Phys. Rev. Lett. 45, 1095 (1980) CrossRefADSGoogle Scholar
  3. 3.
    Konar, S., Sengupta, A.: J. Opt. Soc. Am. B 11, 1644 (1994) ADSCrossRefGoogle Scholar
  4. 4.
    Kumar, A., Kurz, T., Lauterbon, W.: Phys. Lett. A 235, 367 (1997) MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Konar, S., Jana, S.: Opt. Commun. 236, 7 (2004) CrossRefADSGoogle Scholar
  6. 6.
    Konar, S., Sen, P.K., Kumar, J.: J. Nonlinear Opt. Phys. Mater. 8, 492 (1999) CrossRefADSGoogle Scholar
  7. 7.
    Zhou, C., He, X.T., Chen, S.: Phys. Rev. A 46, 2277 (1992) CrossRefADSGoogle Scholar
  8. 8.
    Artigas, D., Torner, L., Torres, J.P., Akhmediev, N.: Opt. Commun. 143, 322 (1997) CrossRefADSGoogle Scholar
  9. 9.
    Jana, S., Konar, S.: Phys. Lett. A 362, 435 (2007) CrossRefADSGoogle Scholar
  10. 10.
    Radhakrishnan, R., Kundu, A., Lakshmanan, M.: Phys. Rev. E 60, 3314 (1999) CrossRefADSGoogle Scholar
  11. 11.
    Anderson, D.: Phys. Rev. A 27, 3135 (1983) CrossRefADSGoogle Scholar
  12. 12.
    Malomed, B.A.: Prog. Opt. 43, 71 (2003) Google Scholar
  13. 13.
    Boesch, R., Stancioff, P., Willis, C.R.: Phys. Rev. B 38, 6713 (1988) CrossRefADSGoogle Scholar
  14. 14.
    Tchofo Dinda, P., Moubissi, A.B., Nakkeeran, K.: J. Phys. A 34, L103 (2001) MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Fewo, S.I., Atangana, J., Kenfack-Jiotsa, A., Kofane, T.C.: Opt. Commun. 252, 138 (2005) CrossRefADSGoogle Scholar
  16. 16.
    Fewo, S.I., Kenfack-Jiotsa, A., Kofane, T.C.: J. Phys. A 39, 1449 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Wai, P.K.A., Nakkeeran, K.: Phys. Lett. A 332, 239 (2004) MATHCrossRefADSGoogle Scholar
  18. 18.
    Konar, S., Mishra, M., Jana, S.: Chaos Solitons Fractals 29, 823 (2006) CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsA.N. CollegePatnaIndia
  2. 2.Department of Applied Mathematics and Theoretical Physics, Center for Research and Education in Optical Sciences and ApplicationsDelaware State UniversityDoverUSA

Personalised recommendations