International Journal of Theoretical Physics

, Volume 47, Issue 6, pp 1533–1541 | Cite as

Cosmological Constant of the (p+1)-Dimensional World, Embedded in the d-Dimensional Bulk Space

  • Davoud Kamani


In this manuscript we study the cosmological constant of a (p+1)-dimensional world, which lives in the higher dimensional bulk space. We assume the extra dimensions are compact on tori. We consider two cases: positive and negative bulk cosmological constant. It is pointed out that the tiny cosmological constant of our world can be obtained by the dynamics of a scalar field and adjusting the parameters of the model. The cosmological constant of the dual world also will be discussed. We obtain the Dirac quantization of these cosmological constants.


Cosmological constant Compactification Brane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989) MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Witten, E.: The cosmological constant from the viewpoint of string theory. hep-ph/0002297 Google Scholar
  3. 3.
    Arkani-Hamed, N., Dimopoulos, S., Kaloper, N., Sundrum, R.: A small cosmological constant from a large extra dimension. Phys. Lett. B 480, 193 (2000). hep-th/0001197 MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998). hep-ph/9803315 CrossRefADSGoogle Scholar
  5. 5.
    Kachru, S., Schulz, M.B., Silverstein, E.: Self-tuning flat domain walls in 5d gravity and string theory. Phys. Rev. D 62, 045021 (2000). hep-th/0001206 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Randall, L., Sundrum, R.: A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999). hep-ph/9905221 MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999). hep-th/9906064 MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257 (1998). hep-ph/9804398 CrossRefADSGoogle Scholar
  9. 9.
    de Alwis, S.P., Flournoy, A.T., Irges, N.: Brane worlds, the cosmological constant and string theory. JHEP 0101, 027 (2001). hep-th/0004125 CrossRefADSGoogle Scholar
  10. 10.
    Burgess, C.P., Myers, R.C., Quevedo, F.: A naturally small cosmological constant on the brane? Phys. Lett. B 495, 384 (2000). hep-th/9911164 CrossRefADSGoogle Scholar
  11. 11.
    Forste, S., Lalak, Z., Lavignac, S., Nilles, H.P.: The cosmological constant problem from a brane-world perspective. JHEP 0009, 034 (2000). hep-th/0006139 CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Carroll, S.M.: The cosmological constant. Living Rev. Rel. 4, 1 (2001). astro-ph/0004075 Google Scholar
  13. 13.
    Padmanabhan, T.: Cosmological constant: The weight of the vacuum. Phys. Rep. 380, 235 (2003). hep-th/0212290 MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Nobbenhuis, S.: Categorizing different approaches to the cosmological constant problem. gr-qc/0411093 Google Scholar
  15. 15.
    Polchinski, J.: The cosmological constant and the string landscape. hep-th/0603249 Google Scholar
  16. 16.
    Krause, A.: A small cosmological constant and backreaction of non-finetuned parameters. JHEP 0309, 016 (2003). hep-th/0007233 CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Easther, R., Maeda, K., Wands, D.: Tree-level string cosmology. Phys. Rev. D 53, 4247 (1996). hep-th/9509074 CrossRefADSGoogle Scholar
  18. 18.
    Banks, T.: T C P, quantum gravity, the cosmological constant and all that…Nucl. Phys. B 249, 332 (1985) CrossRefADSGoogle Scholar
  19. 19.
    Linde, A.D.: Inflation and quantum cosmology. In: Hawking, S.W., Israel, W. (eds.) Three Hundred Years of Gravitation. Cambridge University Press, Cambridge (1987) Google Scholar
  20. 20.
    Gomez, C., Janssen, B., Silva, P.: Dilatonic Randall-Sundrum theory and renormalisation group. JHEP 0004, 024 (2000). hep-th/0002042 CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Torii, T., Shiromizu, T.: Cosmological constant, dilaton field and Freund-Rubin compactification. Phys. Lett. B 551, 161 (2003). hep-th/0210002 MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Ito, M.: Scalar potential from de Sitter brane in 5D and effective cosmological constant. JHEP 0406, 023 (2004). hep-th/0311006 CrossRefADSGoogle Scholar
  23. 23.
    Weinberg, S.: Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607 (1987) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Faculty of PhysicsAmirkabir University of TechnologyTehranIran

Personalised recommendations