Skip to main content
Log in

Quantum Information in the Frame of Coherent States Representation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we have showed that the qubit can be expressed through the coherent states. Consequently, a message, i.e. a sequence of qubits, is expressed as a tensor product of coherent states. In the quantum information theory and practice, only the code and key message are expressed as a sequence of qubits, i.e. through a quantum channel, the properly information will be transmitted by using a classical channel. Even if the most used coherent states in the quantum information theory are the coherent states of the harmonic oscillator (particularly, expressing by them the Schrödinger “cat states” and the Bell states), several authors have been demonstrated that other kind of coherent states may be used in quantum information theory. For the ensembles of qubits, we must use the density operator, in order to describe the informational content of the ensemble. The diagonal representation of the density operator, in the coherent state representation, is also useful to examine the entanglement of the states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X., Sanders, B.C., Pan, S.H.: J. Phys. A: Math. Gen. 33, 7451 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    MATH  Google Scholar 

  3. Janszky, J., Gábris, A., Koniorczyk, M., Vukics, A., Adam, P.: Fortschr. Phys. 49, 993 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Braunstein, S.L., van Loock, P.: Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  Google Scholar 

  5. Andersson, E., Curty, M., Jex, I.: Phys. Rev. A 74, 022304 (2006)

    Article  ADS  Google Scholar 

  6. Araki, H., Lieb, E.: Commun. Math. Phys. 18, 160 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  7. Fujii, K.: Introduction to coherent states, quantum information theory. quant-ph/0112090 (2001)

  8. Daoud, M., Popov, D.: Int. J. Mod. Phys. B 18, 325 (2004)

    Article  ADS  Google Scholar 

  9. Popov, D.: Phys. Lett. A 316, 369 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Popov, D., Zaharie, I., Dong, S.H.: Czech. J. Phys. 56, 157 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Popov, D.: J. Phys. A: Math. Gen. 34, 5283 (2001)

    MATH  ADS  Google Scholar 

  12. Popov, D.: J. Phys. A: Math. Gen. 35, 7205 (2002)

    Article  MATH  ADS  Google Scholar 

  13. Popov, D.: Density Matrix—General Properties and Applications in the Physics of Many Particle Systems. Editura Politehnica, Timişoara (2004) (in Romanian)

    Google Scholar 

  14. Barut, A.O., Girardello, L.: Commun. Math. Phys. 21, 41 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Antoine, J.-P., Gazeau, J.-P., Monceau, P., Klauder, J.R., Penson, K.A.: J. Math. Phys. 42, 2349 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Zaharie, I., Popov, D.: Rom. J. Optoelectron. 13(1), 59 (2005)

    Google Scholar 

  17. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Ekert, A.: Phys. Rev. Lett. 67, 661 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Barenco, A., Dutch, D., Ekert, A., Jozsa, R.: Phys. Rev. Lett. 74, 4085 (1995)

    Article  ADS  Google Scholar 

  20. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  21. Eisert, J., Plenio, M.B.: Int. J. Quant. Inf. 1, 479 (2003)

    Article  MATH  Google Scholar 

  22. Agarwal, G.S., Biswas, A.: J. Opt. B 7, 350 (2005)

    MathSciNet  ADS  Google Scholar 

  23. Li, Y., Jing, S.: Mod. Phys. Lett. A 18, 1523 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Chakrabarti, R., Vasan, S.S.: Entanglement via Barut–Girardello coherent state for su q (1,1) quantum algebra: bipartite composite system. math.QA/0301036 (2003)

  25. Huang, H., Agarwal, G.S.: Phys. Rev. A 49, 52 (1994)

    Article  ADS  Google Scholar 

  26. Preskill, J.: Quantum Information and Computation. Lecture Notes in Physics, vol. 229. Springer, Berlin (1998)

    Google Scholar 

  27. Zhong, Z.Z.: Int. J. Quant. Inf. 3, 405 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Popov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, D., Zaharie, I., Sajfert, V. et al. Quantum Information in the Frame of Coherent States Representation. Int J Theor Phys 47, 1441–1454 (2008). https://doi.org/10.1007/s10773-007-9586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-007-9586-9

Keywords

Navigation