Skip to main content
Log in

Homotopy Approach to Quantum Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Gravity may be a quantum-space-time effect. General relativity is quantized by small generic changes in its commutation relations that make its Lie algebras simple on all levels, positing extra variables frozen by self-organization as needed. This quantizes space-time coordinates as well as fields and eliminates physical singularities. Fermi statistics and sl (nℝ) Lie algebras are assumed for all levels. Spin 1/2 is taken to be anomalous, arising from vacuum organization; the spin-statistics relation is incorporated. The gravitational field is quartic in Fermi variables. Einstein’s non-commutativity of parallel transport emerges as a vestige of Heisenberg’s quantum non-commutativity near the classical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atakishiyev, N.M., Pogosyan, G.S., Wolf, K.B.: Contraction of the finite one-dimensional oscillator. Int. J. Mod. Phys. A 18, 317 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bacon, F.: Novum Organum (1620). Urban, P., Gibson, J. (tr. eds.) Open Court Publishing Company, Peru (1994)

  3. Banks, T., Fischler, W., Shenker, S., Susskind, L.: M-theory as a matrix model: a conjecture. Phys. Rev. D 55, 5112 (1997)

    ADS  MathSciNet  Google Scholar 

  4. Baugh, J.: Regular quantum dynamics. PhD thesis, School of Physics, Georgia Institute of Technology (2004)

  5. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Quantum mechanics as a deformation of classical mechanics. Lett. Math. Phys. 1, 521–530 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization I. Ann. Phys. (N.Y.) 111, 61–110 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization II. Ann. Phys. (N.Y.) 111, 111–151 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Bergmann, P.G., Komar, A.: Int. J. Theor. Phys. 5, 15 (1972)

    Article  MathSciNet  Google Scholar 

  9. Bergmann, P.G.: The fading world point. In: Bergmann, P.G., de Sabbata, V. (eds.) Cosmology and Gravitation. Spin, Torsion, Rotation, and Supergravity, pp. 173–176. Plenum, New York (1979)

    Google Scholar 

  10. Bollini, C.G., Giambiagi, J.J.: Nuovo Cimento 31, 550 (1964)

    Article  MathSciNet  Google Scholar 

  11. Born, M.: Rev. Mod. Phys. 21, 463 (1949)

    Article  MATH  ADS  Google Scholar 

  12. Brauer, R., Weyl, H.: Spinors in n dimensions. Am. J. Math. 57, 425 (1935)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cartan, E.: Leçons sur la theorie des spineurs. Hermann, Paris (1938)

    Google Scholar 

  14. Chevalley, C.: The Algebraic Theory of Spinors. Columbia University Press, New York

  15. Connes, A.: Non-Commutative Geometry. Academic Press, San Diego (1994)

    Google Scholar 

  16. Dubois-Violette, M., Kerner, R., Madore, J.: Gauge bosons in a non-commutative geometry. Phys. Lett. B 217, 485 (1989)

    ADS  MathSciNet  Google Scholar 

  17. Feynman, R.P.: Personal communication (1960). Feynman recalled that he began this line of thought as a graduate student, dropped it when he turned to the Lamb shift, and later published the formula (1) as a footnote

  18. Finkelstein, D.: On relations between commutators. Commun. Pure Appl. Math. 8, 245–250 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  19. Finkelstein, D.: Space–time code. Phys. Rev. 184, 1261–1271 (1969)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Finkelstein, D.: Quantum set theory and Clifford algebra. Int. J. Theor. Phys. 21, 489–503 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Finkelstein, D.R.: Quantum Relativity. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  22. Finkelstein, D.R.: Cliffordons. J. Math. Phys. 42, 3299 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Finkelstein, D.R., Shiri-Garakani, M.: Expanded quantum linear harmonic oscillator. In: Proceedings of the 3rd International Symposium on Quantum Theory and Symmetries (QTS3), Cincinnati, OH (2003)

  24. Flato, M.: Deformation view of physical theories. Czechoslov. J. Phys. B 32, 472–475 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gerstenhaber, M.: Ann. Math. 32, 472 (1964)

    MathSciNet  Google Scholar 

  26. Grgin, E., Petersen, A.: Relation between classical and quantum mechanics. Int. J. Theor. Phys. 6, 325 (1972)

    Article  Google Scholar 

  27. Inönü, E., Wigner, E.P.: Proc. Natl. Acad. Sci. 39, 510–524 (1953)

    Article  MATH  ADS  Google Scholar 

  28. Kuzmich, A., Bigelow, N.P., Mandel, L.: Europhys. Lett. A 42, 481 (1998)

    Article  ADS  Google Scholar 

  29. Kuzmich, A., Mandel, L., Janis, J., Young, Y.E., Ejnisman, R., Bigelow, N.P.: Phys. Rev. A 60, 2346 (1999)

    Article  ADS  Google Scholar 

  30. Kuzmich, A., Mandel, L., Bigelow, N.P.: Phys. Rev. Lett. 85, 1594 (2000)

    Article  ADS  Google Scholar 

  31. Laughlin, R.A.: A Different Universe: Reinventing Physics from the Bottom Down. Basic Books, New York (2005)

    Google Scholar 

  32. Manfredi, V.R., Salasnich, L.: Int. J. Mod. Phys. B 13, 2343 (1999), arxiv:cond-mat/0109153

    Article  ADS  Google Scholar 

  33. Mind & Life 1997: The New Physics & Cosmology. Dharmsala (1997)

  34. Mathematisches Forschungsinstitut Oberwolfach Report No. 3/2006. Deformations and Contractions in Mathematics and Physics. Organised by Alice Fialowski (Budapest) Marc de Montigny (Edmonton) Sergey P. Novikov (College Park) Martin Schlichenmaier (Luxembourg), 15–21 January 2006

  35. Palev, T.D.: Lie algebraical aspects of the quantum statistics. Unitary quantization (A-quantization). JINR Preprint E17-10550 (1977), hep-th/9705032

  36. Penrose, R.: Angular momentum: an approach to combinatorial space-time. In: Bastin, T. (ed.) Quantum Theory and Beyond, pp. 151–180. Cambridge University Press, Cambridge (1971). Penrose kindly shared much of this seminal work with me ca. 1960

    Google Scholar 

  37. Saller, H.: Operational Quantum Theory I—Nonrelativistic Structures. Springer, New York (2006)

    Google Scholar 

  38. Segal, I.E.: Duke Math. J. 18, 221–265 (1951). Especially pp. 255–256

    Article  MATH  MathSciNet  Google Scholar 

  39. Shiri-Garakani, M.: Finite quantum theory of the harmonic oscillator. PhD thesis, School of Physics, Georgia Institute of Technology (2004)

  40. Shiri-Garakani, M., Finkelstein, D.R.: Finite quantum theory of the harmonic oscillator. quant-ph/0411203 (2004). Based on Ref. [39]

  41. Snyder, H.P.: Quantized space–time. Phys. Rev. 71, 38 (1947)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. ’t Hooft, G.: Determinism in Free Bosons. Int. J. Theor. Phys. 42, 355 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Vilela-Mendes, R.: J. Phys. A: Math. Gen. 27, 8091–8104 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ritz Finkelstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkelstein, D.R. Homotopy Approach to Quantum Gravity. Int J Theor Phys 47, 534–552 (2008). https://doi.org/10.1007/s10773-007-9479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-007-9479-y

Keywords

Navigation