Advertisement

International Journal of Theoretical Physics

, Volume 46, Issue 11, pp 2758–2773 | Cite as

The Heterotic Supersymmetric Sigma Model in the Canonical Exterior Formalism

  • O. S. Zandron
Article

Abstract

Starting from a classical 2D superconformal theory described by the Wess–Zumino–Witten action, the canonical exterior formalism on group manifold for the heterotic supersymmetric sigma model is constructed. The motion equations of the dynamical field and the constraints are found and analyzed from the geometric point of view. It can be seen how the use of the canonical exterior formalism is more adequate and simple because of its manifest covariance in all the steps. The relationship between the form brackets defined in the canonical exterior formalism and the Poisson-brackets is written. Later on, the Dirac-brackets are written by using the second class constraints provided by the canonical exterior formalism. As it can be seen the canonical exterior formalism allows to show how the canonical quantization of the heterotic supersymmetric sigma model is facilitated.

Keywords

Poisson Bracket Canonical Variable Target Space Canonical Quantization Conformal Supergravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zandron, O.: Int. J. Theor. Phys. 45, 541–557 (2006) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Teitelboim, C.: Phys. Lett. B 126, 41 (1983) ADSMathSciNetGoogle Scholar
  3. 3.
    Teitelboim, C.: Phys. Lett. B 126, 46 (1983) ADSMathSciNetGoogle Scholar
  4. 4.
    Teitelboim, C.: Phys. Lett. B 126, 49 (1983) ADSMathSciNetGoogle Scholar
  5. 5.
    Jackiw, R., Teitelboim, C. In: Christensen, S. (ed.) Quantum Theory of Gravity. Hilger, Bristol (1984) Google Scholar
  6. 6.
    Jackiw, R.: Nucl. Phys. B 252, 343 (1985) CrossRefADSGoogle Scholar
  7. 7.
    Aragone, C., Deser, S., Ferrara, S.: Class. Quantum Gravity 4, 1003 (1987) MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Fukuyama, T., Kamimura, K.: Phys. Lett. B 160, 259 (1985) ADSMathSciNetGoogle Scholar
  9. 9.
    Chamseddine, A.H., Wyler, D.: Phys. Lett. B 228, 75 (1989) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Montano, D., Sonnenschein, J.: Nucl. Phys. B 313, 258 (1989) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Chamseddine, A.H.: Phys. Lett. B 258, 97 (1991) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Cangemi, D., Jackiw, R.: Phys. Rev. Lett. 69, 233 (1992) MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Callan, C., Giddings, S., Harvey, A., Strominger, A.: Phys. Rev. D 45, 1005 (1992) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Verlinde, H. In: Sato, H. (ed.) 6th Marcel Grossman Meeting on General Relativity. World Scientific, Singapore (1992) Google Scholar
  15. 15.
    Park, Y., Strominger, A.: Phys. Rev. D 47, 1569 (1993) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Cangemi, D., Leblanc, M.: Nucl. Phys. B 420, 363 (1994) MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Cattaneo, A.S., Felder, G.: Commun. Math. Phys. 212, 591–611 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Grumiller, D., Kummer, W., Vassilevich, D.V.: Phys. Rep. 369, 327–429 (2002) MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Guralnik, G., Iorio, A., Jackiw, R., Pi, S.-Y.: Ann. Phys. (N.Y.) 308, 222 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Grumiller, D., Kummer, W.: Ann. Phys. (N.Y.) 308, 211 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Bergamin, L., Grumiller, D., Kummer, W.: J. Phys. A 37, 3881 (2004), and bibliography quoted therein MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Bergshoeff, E., Sezgin, E., Nishino, H.: Phys. Lett. B 166, 141–148 (1986) ADSMathSciNetGoogle Scholar
  23. 23.
    Bergshoeff, E., Sezgin, E., Nishino, H.: Phys. Lett. B 186, 167–172 (1987), and bibliography quoted therein ADSMathSciNetGoogle Scholar
  24. 24.
    Bergshoeff, E., Sezgin, E.: Mod. Phys. Lett. A 1, 191–201 (1986) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstring, a Geometric Perspective, vol. III: Superstrings. World Scientific, Singapore (1991) Google Scholar
  26. 26.
    Castellani, R., D’Auria, R., Franco, D.: Int. J. Mod. Phys. A 6, 4009–4039 (1991) ADSMathSciNetGoogle Scholar
  27. 27.
    D’Adda, A., Nelson, J., Regge, T.: Ann. Phys. (N.Y.) 165, 384 (1985) MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Nelson, J., Regge, T.: Ann. Phys. (N.Y.) 166, 234 (1986) MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Lerda, A., Nelson, J., Regge, T.: Int. J. Mod. Phys. A 2, 1843 (1987) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Foussats, A., Zandron, O.S.: Ann. Phys. (N.Y.) 189, 174 (1989) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Foussats, A., Zandron, O.S.: Ann. Phys. (N.Y.) 191, (1989) Google Scholar
  32. 32.
    Foussats, A., Zandron, O.S.: Ann. Phys. (N.Y.) 203, 207 (1990) CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Foussats, A., Zandron, O.S.: Phys. Rev. D 43, 1883 (1991) CrossRefADSGoogle Scholar
  34. 34.
    Foussats, A., Zandron, O.S.: Int. J. Mod. Phys. A 5, 725 (1990) MATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Foussats, A., Repetto, C., Zandron, O.P., Zandron, O.S.: Class. Quantum Gravity 19, 2217 (1992) CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Foussats, A., Repetto, C., Zandron, O.P., Zandron, O.S.: Class. Quantum Gravity 14, 269 (1997) MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Facultad de Ciencias Exactas Ingeniería y Agrimensura de la UNRRosarioArgentina

Personalised recommendations