Advertisement

International Journal of Theoretical Physics

, Volume 46, Issue 10, pp 2429–2436 | Cite as

Horizon-less Spherically Symmetric Vacuum-Solutions in a Higgs Scalar-Tensor Theory of Gravity

  • Nils M. Bezares-Roder
  • Hemwati Nandan
  • Heinz Dehnen
Article

Abstract

The exact static and spherically symmetric solutions of the vacuum field equations for a Higgs Scalar-Tensor theory (HSTT) are derived in Schwarzschild coordinates. It is shown that in general there exists no Schwarzschild horizon and that the fields are only singular (as naked singularity) at the center (i.e. for the case of a point-particle). However, the Schwarzschild solution as in usual general relativity (GR) is obtained for the vanishing limit of Higgs field excitations.

Keywords

Higgs scalar tensor theory Gravity Schwarzschild horizon Singularity and Black holes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, T.D.: Particle Physics and Introduction to Field Theory. Harwood Academic, New York (1981) Google Scholar
  2. 2.
    Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison–Wesley, Reading (1995) Google Scholar
  3. 3.
    Higgs, P.W.: Phys. Rev. Lett. 12, 132 (1964) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Engelert, F., Brout, R.: Phys. Rev. Lett. 13, 321 (1964) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Hardell, A., Dehnen, H.: Gen. Relativ. Gravit. 25(11), 1165 (1993) MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Reissner, H.: Ann. Phys. 50, 106 (1916) CrossRefGoogle Scholar
  7. 7.
    Cotsakis, S.: gr-qc/9712046 (1997) Google Scholar
  8. 8.
    Jordan, P.: Schwerkraft und Weltall. Vieweg, Braunschweig (1955) MATHGoogle Scholar
  9. 9.
    Brans, C.H., Dicke, R.H.: Phys. Rev. 124, 925 (1961) MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Fauser, B.: gr-qc/0011015 (2001) Google Scholar
  11. 11.
    Dehnen, H., Frommert, H.: Int. J. Theor. Phys. 29(4), 361 (1990) MATHCrossRefGoogle Scholar
  12. 12.
    Dehnen, H., Frommert, H.: Int. J. Theor. Phys. 29(6), 537 (1990) MATHCrossRefGoogle Scholar
  13. 13.
    Dehnen, H., Frommert, H.: Int. J. Theor. Phys. 30, 985 (1991) CrossRefGoogle Scholar
  14. 14.
    Brans, C.H.: Gravity and the tenacious scalar field. gr-qc/9705069 (1997) Google Scholar
  15. 15.
    Einstein, A.: Phys. Z. 14, 1260 (1913) Google Scholar
  16. 16.
    Zee, A.: Phys. Rev. Lett. 42(7), 417 (1979) CrossRefADSGoogle Scholar
  17. 17.
    Dehnen, H., Frommert, H., Ghaboussi, F.: Int. J. Theor. Phys. 31(1), 109 (1992) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dehnen, H., Frommert, H.: Int. J. Theor. Phys. 32(7), 1135 (1993) CrossRefGoogle Scholar
  19. 19.
    Gessner, E.: Astrophys. Space Sci. 196, 29 (1992) CrossRefADSGoogle Scholar
  20. 20.
    Rodríguez-Meza, M.A., Cervantes-Cota, J.L.: Mon. Not. Roy. Astron. Soc. 350, 671 (2004) CrossRefADSGoogle Scholar
  21. 21.
    Bezares-Roder, N.M., Dehnen, H.: Higgs scalar–tensor theory for gravity and the flat rotation curves of spiral galaxies. In: The special issue of Gen. Relativ. Gravit. dedicated to O. Obregon on the occasion of his 60th birthday (2007, accepted) Google Scholar
  22. 22.
    Cervantes-Cota, J.L., Dehnen, H.: Phys. Rev. D 51, 395 (1995) CrossRefADSGoogle Scholar
  23. 23.
    Cervantes-Cota, J.L., Dehnen, H.: Nucl. Phys. B 442, 391 (1995) CrossRefADSGoogle Scholar
  24. 24.
    Berkin, A.L., Maeda, K.: Phys. Rev. D 44, 1691 (1991) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Bezares-Roder, N.M., Nandan, H.: Spontaneous symmetry breakdown and critical perspectives of Higgs mechanism. hep-ph/0603168 (2006) Google Scholar
  26. 26.
    Bezares-Roder, N.M., Nandan, H., Dehnen, H.: Schwarzchild solution in a Higgs scalar–tensor theory of gravity. In: 24th IAGRG Meeting, New Dehli, India. Reant Advances in Gravitation and Cosmology (2007) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nils M. Bezares-Roder
    • 1
  • Hemwati Nandan
    • 2
  • Heinz Dehnen
    • 3
  1. 1.Institut für Theoretische PhysikUniversität UlmUlmGermany
  2. 2.Centre for Theoretical StudiesIndian Institute of TechnologyKharagpurIndia
  3. 3.Fachbereich PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations