Semi-Groups and Time Operators for Quantum Unstable Systems

  • Maurice Courbage


We use spectral projections of time operator in the Liouville space for simple quantum scattering systems in order to define a space of unstable particle states evolving under a contractive semi-group. This space includes purely exponentially decaying states that correspond to complex eigenvalues of this semi-group. The construction provides a probabilistic interpretation of the resonant states characterized in terms of the Hardy class.


quantum ustable system time operator semigroup time evolution Hardy spaces Liouville spaces 


  1. Bohm, A., and Gadella, M. (1989). Dirac kets, Gamow Vectors and Gelfand Triplets, vol. 348, Lecture Notes in Physics, Springer-Verlag.Google Scholar
  2. Chiu, C. B., Sudarshan, E. C. G., and Misra, B. (1977). Time evolution of unstable quantum states and a resolution of Zeno's paradox. Physical Review D 16, 520–529.CrossRefADSMathSciNetGoogle Scholar
  3. Courbage, M. (1980). On necessary and sufficient conditions for the existence of time and entropy operators. Letters in Mathematical Physics 4, 425–432.MATHCrossRefMathSciNetADSGoogle Scholar
  4. Courbage, M. (1982a). Mathematical problems of irreversible statistical mechanics for quantum systems. I. Analytic continuation of the collision and destruction operators by spectral deformation methods. Journal of Mathematical Physics 23, 646–651.CrossRefADSMathSciNetGoogle Scholar
  5. Courbage, M. (1982b). II. On the singularities of (ψ (z)-z)-1 and the pseudo-Markovian equation. Application to Lee model. Journal of Mathematical Physics 23, 652–658.CrossRefADSMathSciNetGoogle Scholar
  6. Courbage, M. (1987). On the description of quantum dissipative processes. In Blaquière, A., Diner, S., and Lochak, G. (Eds.), Complexity and Control in Quantum Mechanics, Springer-Verlag.Google Scholar
  7. Courbage, M. (2001). Time operator in quantum mechanics and some stochastic processes with long memory. Cybernetics and Systems: International Journal 32, 385–392.MATHCrossRefGoogle Scholar
  8. Friedrichs, K. O. (1948). On the perturbation of continuous spectra, Communications in Pure and Applied Mathematics 1, 361.CrossRefMathSciNetGoogle Scholar
  9. Horwitz, L. P., and Marchand, J. P. (1971). The decay-scattering system. Rocky Mountain Journal of Mathematics 1, 225–253.MATHMathSciNetCrossRefGoogle Scholar
  10. Jammer, M. (1974). The Philosophy of Quantum Mechanics, New York, Wiley Interscience.Google Scholar
  11. Lax, P. D., and Phillips, R. S. (1967). Scattering Theory, Academic Press, N.Y.MATHGoogle Scholar
  12. Misra, B., and Sudarshan, E. C. G. (1977). The Zeno's paradox in quantum theory. Journal of Mathematical Physics 18, 756–763CrossRefADSMathSciNetGoogle Scholar
  13. Misra, B., Prigogine, I., and Courbage, M. (1979). Liapounov variable, entropy and measurement in quantum mechanics. Proceedings of the National Academy of Sciences of the United States of America 76, 4768–4772.CrossRefADSMathSciNetGoogle Scholar
  14. Ordoñez, G., Petrovsky, T., Karpov, E., and Prigogine, I. (2001). Explicit construction of time superoperator for quantum unstable systems. Chaos Solitons Fractals 12, 2591–2601.MATHCrossRefMathSciNetGoogle Scholar
  15. Strauss, Y. (2003). Resonances in the Rigged Hilbert space and Lax-Phillips scattering theory. International Journal of Theoretical Physics 42, 2379–2388.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique de la Matière CondenséeUniversité Paris 7 – Denis DiderotParis Cedex 05France

Personalised recommendations