Skip to main content
Log in

Thermal State for the Capacitance Coupled Mesoscopic Circuit with a Power Source

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Schrödinger equation of the mesoscopic capacitance coupled circuit with an arbitrary power source is solved by means of two step unitary transformation. The original Hamiltonian transformed to a very simple form by unitary operators so that it can be easily treated. We derived the exact full wave functions in Fock state. By making use of these wave functions and introducing the Lewis--Riesenfeld invariant operator, the thermal state have been constructed. The fluctuations of charges and currents are evaluated in thermal state. For T→ 0, the uncertainty products between charges and currents in thermal state recovers exactly to that of Fock state with n, m=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baseia, B. and De Brito, A. L. (1993). Quantum noise reduction in an electrical circuit having a time dependent parameter. Physica A 197, 364–370.

    Article  ADS  Google Scholar 

  • Buot, F. A. (1993). Mesoscopic physics and nanoelectronics: nanoscience and nanotechnology. Physics Reports 234, 73–174.

    Article  ADS  Google Scholar 

  • Chen, B., Li, Y. Q., Fang, H., Jiao, Z. K., and Zhang, Q. R. (1995). Quantum effects in a mesoscopic circuit. Physics Letters A 205, 121–124.

    Article  ADS  Google Scholar 

  • Choi, J. R. (2002). Quantization of underdamped, critically damped, and overdamped electric circuits with a power source. International Journal of Theoretical Physics 41, 1931–1939.

    Article  MATH  Google Scholar 

  • Choi, J. R. (2003). The decay properties of a single-photon in linear media. Chinese Journal of Physics 41, 257–266.

    ADS  Google Scholar 

  • Choi, J. R. and Gweon, J. H. (2003). Thermal state of a harmonic oscillator with a linearly decreasing mass. Journal of the Korean Physical Society 43, 17–23.

    Google Scholar 

  • Choi, J. R. (2004). Coherent states of general time-dependent harmonic oscillator. Pramana-Journal of Physics 62, 13–29.

    Article  ADS  Google Scholar 

  • Choi, J. R. (2006). Exact solution of a quantized LC circuit coupled to a power source. Physica Scripta 73, 587–595.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Choi, J. R. and Nahm, I. H. (in press). Canonical transformation approach to the classical solution of RLC coupled two-dimensional circuit with an arbitrary power source Modern Physics Letters B.

  • Gweon, J. H. and Choi, J. R. (2003). Propagator and geometric phase of a general time-dependent harmonic oscillator. Journal of the Korean Physical Society 42, 325–330.

    Google Scholar 

  • Heinzen, D. J. and Wineland, D. J. (1990). Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. Physical Review A 42, 2977–2994.

    Article  ADS  Google Scholar 

  • Isihara, A. (1971). Statistical Physics, Academic Press, New York, p. 154.

    Google Scholar 

  • Ji, J.-Y. and Kim, J.-K. (1996). Temperature changes and squeezing properties of the system of time-dependent harmonic oscillators. Physical Review A 53, 703–708.

    Article  ADS  Google Scholar 

  • Landovitz, L. F., Levine, A. M., and Schreiber, W. M. (1979). Time-dependent harmonic oscillators. Physical Review A 20, 1162–1168.

    Article  MathSciNet  ADS  Google Scholar 

  • Lewis, H. R., Jr. (1967). Classical and quantum systems with time-dependent harmonic-oscillator-type hamiltonians. Physical Review Letters 18, 510–512.

    Article  ADS  Google Scholar 

  • Louisell, W. H. (1973). Quantum Statistical Properties of Radiation, Wiley, New York.

    Google Scholar 

  • Robertson, H. S. (1993). Statistical Thermophysics, Prentice Hall, Englewood Cliffs, p. 450.

    Google Scholar 

  • Um, C. I., Kim, I. H., Yeon, K. H., George, T. F., and Pandey, L. N. (1997). Wavefunctions and minimum uncertainty states of the harmonic oscillator with an exponentially decaying mass. Journal of Physics A: Mathematical and General 30, 2545–2556.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Wineland, D. J. and Dehmelt, H. G. (1975). Principles of the stored ion calorimeter. Journal of Applied Physics 46, 919–930.

    Article  ADS  Google Scholar 

  • Yeon, K. H., Lee, K. K., Um, C. I., George, T. F., and Pandey, L. N. (1993). Exact quantum theory of a time-dependent bound quadratic Hamiltonian system. Physical Review A 48, 2716–2720.

    Article  ADS  Google Scholar 

  • Yeon, K. H., Kim, H. J., Um, C. I., George, T. F., and Pandey, L. N. (1996). Propagator of a time-dependent unbound quadratic Hamiltonian system. Il Nuovo cimento della Societa italiana di fisica. B 111, 963–971.

    Google Scholar 

  • Zhang, Z.-M., He, L.-S., and Zhou, S.-K. (1998). A quantum theory of an RLC circuit with a source. Physics Letters A 244, 196–200.

    Article  ADS  Google Scholar 

  • Zhang, S., Choi, J. R., Um, C. I., and Yeon, K. H. (2001). Quantum uncertainties of mesoscopic capacitance coupled circuit. Physics Letters A 289, 257–263.

    Article  ADS  Google Scholar 

  • Zhang, S., Choi, J. R., Um, C. I., and Yeon, K. H. (2002a). Quantum uncertainties of mesoscopic inductance-resistance coupled circuit. Journal of the Korean Physical Society 40, 325–329.

    Google Scholar 

  • Zhang, S., Choi, J. R., Um, C. I., and Yeon, K. H. (2002b). Quantum squeezing effect of mesoscopic capacitance-inductance-resistance coupled circuit. Physics Letters A 294, 319–326.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Ryeol Choi.

Additional information

PACS NUMBERS: {73.23.−b, 84.30.Jc; 03.65.−w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.R., Oh, JY. Thermal State for the Capacitance Coupled Mesoscopic Circuit with a Power Source. Int J Theor Phys 46, 1836–1852 (2007). https://doi.org/10.1007/s10773-006-9318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9318-6

Keywords

Navigation