Advertisement

International Journal of Theoretical Physics

, Volume 46, Issue 7, pp 1836–1852 | Cite as

Thermal State for the Capacitance Coupled Mesoscopic Circuit with a Power Source

  • Jeong Ryeol Choi
  • Jun-Young Oh
Article

Abstract

The Schrödinger equation of the mesoscopic capacitance coupled circuit with an arbitrary power source is solved by means of two step unitary transformation. The original Hamiltonian transformed to a very simple form by unitary operators so that it can be easily treated. We derived the exact full wave functions in Fock state. By making use of these wave functions and introducing the Lewis--Riesenfeld invariant operator, the thermal state have been constructed. The fluctuations of charges and currents are evaluated in thermal state. For T→ 0, the uncertainty products between charges and currents in thermal state recovers exactly to that of Fock state with n, m=0.

Keywords

mesoscopic capacitance coupled circuit thermal state uncertainty product 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baseia, B. and De Brito, A. L. (1993). Quantum noise reduction in an electrical circuit having a time dependent parameter. Physica A 197, 364–370.CrossRefADSGoogle Scholar
  2. Buot, F. A. (1993). Mesoscopic physics and nanoelectronics: nanoscience and nanotechnology. Physics Reports 234, 73–174.CrossRefADSGoogle Scholar
  3. Chen, B., Li, Y. Q., Fang, H., Jiao, Z. K., and Zhang, Q. R. (1995). Quantum effects in a mesoscopic circuit. Physics Letters A 205, 121–124.CrossRefADSGoogle Scholar
  4. Choi, J. R. (2002). Quantization of underdamped, critically damped, and overdamped electric circuits with a power source. International Journal of Theoretical Physics 41, 1931–1939.MATHCrossRefGoogle Scholar
  5. Choi, J. R. (2003). The decay properties of a single-photon in linear media. Chinese Journal of Physics 41, 257–266.ADSGoogle Scholar
  6. Choi, J. R. and Gweon, J. H. (2003). Thermal state of a harmonic oscillator with a linearly decreasing mass. Journal of the Korean Physical Society 43, 17–23.Google Scholar
  7. Choi, J. R. (2004). Coherent states of general time-dependent harmonic oscillator. Pramana-Journal of Physics 62, 13–29.CrossRefADSGoogle Scholar
  8. Choi, J. R. (2006). Exact solution of a quantized LC circuit coupled to a power source. Physica Scripta 73, 587–595.MATHCrossRefMathSciNetADSGoogle Scholar
  9. Choi, J. R. and Nahm, I. H. (in press). Canonical transformation approach to the classical solution of RLC coupled two-dimensional circuit with an arbitrary power source Modern Physics Letters B.Google Scholar
  10. Gweon, J. H. and Choi, J. R. (2003). Propagator and geometric phase of a general time-dependent harmonic oscillator. Journal of the Korean Physical Society 42, 325–330.Google Scholar
  11. Heinzen, D. J. and Wineland, D. J. (1990). Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. Physical Review A 42, 2977–2994.CrossRefADSGoogle Scholar
  12. Isihara, A. (1971). Statistical Physics, Academic Press, New York, p. 154.Google Scholar
  13. Ji, J.-Y. and Kim, J.-K. (1996). Temperature changes and squeezing properties of the system of time-dependent harmonic oscillators. Physical Review A 53, 703–708.CrossRefADSGoogle Scholar
  14. Landovitz, L. F., Levine, A. M., and Schreiber, W. M. (1979). Time-dependent harmonic oscillators. Physical Review A 20, 1162–1168.CrossRefMathSciNetADSGoogle Scholar
  15. Lewis, H. R., Jr. (1967). Classical and quantum systems with time-dependent harmonic-oscillator-type hamiltonians. Physical Review Letters 18, 510–512.CrossRefADSGoogle Scholar
  16. Louisell, W. H. (1973). Quantum Statistical Properties of Radiation, Wiley, New York.Google Scholar
  17. Robertson, H. S. (1993). Statistical Thermophysics, Prentice Hall, Englewood Cliffs, p. 450.Google Scholar
  18. Um, C. I., Kim, I. H., Yeon, K. H., George, T. F., and Pandey, L. N. (1997). Wavefunctions and minimum uncertainty states of the harmonic oscillator with an exponentially decaying mass. Journal of Physics A: Mathematical and General 30, 2545–2556.MATHCrossRefMathSciNetADSGoogle Scholar
  19. Wineland, D. J. and Dehmelt, H. G. (1975). Principles of the stored ion calorimeter. Journal of Applied Physics 46, 919–930.CrossRefADSGoogle Scholar
  20. Yeon, K. H., Lee, K. K., Um, C. I., George, T. F., and Pandey, L. N. (1993). Exact quantum theory of a time-dependent bound quadratic Hamiltonian system. Physical Review A 48, 2716–2720.CrossRefADSGoogle Scholar
  21. Yeon, K. H., Kim, H. J., Um, C. I., George, T. F., and Pandey, L. N. (1996). Propagator of a time-dependent unbound quadratic Hamiltonian system. Il Nuovo cimento della Societa italiana di fisica. B 111, 963–971.Google Scholar
  22. Zhang, Z.-M., He, L.-S., and Zhou, S.-K. (1998). A quantum theory of an RLC circuit with a source. Physics Letters A 244, 196–200.CrossRefADSGoogle Scholar
  23. Zhang, S., Choi, J. R., Um, C. I., and Yeon, K. H. (2001). Quantum uncertainties of mesoscopic capacitance coupled circuit. Physics Letters A 289, 257–263.CrossRefADSGoogle Scholar
  24. Zhang, S., Choi, J. R., Um, C. I., and Yeon, K. H. (2002a). Quantum uncertainties of mesoscopic inductance-resistance coupled circuit. Journal of the Korean Physical Society 40, 325–329.Google Scholar
  25. Zhang, S., Choi, J. R., Um, C. I., and Yeon, K. H. (2002b). Quantum squeezing effect of mesoscopic capacitance-inductance-resistance coupled circuit. Physics Letters A 294, 319–326.MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Physics and Advanced Materials SciencesSun Moon UniversityAsanRepublic of Korea
  2. 2.Basic Sciences Research InstituteChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations