International Journal of Theoretical Physics

, Volume 46, Issue 6, pp 1584–1595 | Cite as

Plane Symmetric Inhomogeneous Cosmological Models with a Perfect Fluid in General Relativity

  • Anirudh Pradhan
  • Purnima Pandey
  • Sunil Kumar Singh


In this paper we investigate a class of solutions of Einstein equations for the plane- symmetric perfect fluid case with shear and vanishing acceleration. If these solutions have shear, they must necessarily be non-static. We examine the integrable cases of the field equations systematically. Among the cases with shear we find three classes of solutions.


exact solutions plane symmetric models inhomogeneous universe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anguige, K. (2000). Classical and Quantum Gravity 17, 2117.MATHCrossRefMathSciNetADSGoogle Scholar
  2. Bali, R. and Tyagi, A. (1990). Astrophysics and Space Science 173, 233.MATHCrossRefMathSciNetADSGoogle Scholar
  3. Bondi, H. (1947). Monthy Notices of the Royal Astronomical Society 107, 410.MATHMathSciNetADSGoogle Scholar
  4. Chervon, S. V. and Shabalkin, D. Y. (2000). Gravitatin & Cosmology 21, 41.MathSciNetGoogle Scholar
  5. Collins, C. B. and Szafron, D. A. (1979a). Journal of Mathematical Phyics 20, 2347.CrossRefMathSciNetADSGoogle Scholar
  6. Collins, C. B. and Szafron, D. A. (1979b). Journal of Mathematical Phyics 20, 2362.CrossRefMathSciNetADSGoogle Scholar
  7. da Silva, M. F. A. and Wang, A. (1998). Physics Letters A244, 462.ADSGoogle Scholar
  8. Herlt, E. (1996). General Relativity and Gravitation 28, 919.MATHCrossRefMathSciNetADSGoogle Scholar
  9. McVittie, G. C. and Wiltshire, R. J. (1975). International Journal of Theoretical Physics 14, 145.CrossRefMathSciNetADSGoogle Scholar
  10. Nouri-Zonoz, M. and Tavanfar, A. R. (2001). Classical and Quantum Gravity 18, 4293.MATHCrossRefMathSciNetADSGoogle Scholar
  11. Ori, A. (1998). Physical Review D57, 4745.MathSciNetADSGoogle Scholar
  12. Pradhan, A. and Pandey, H. R. (2003). International Journal of Modern Phyics D12, 941.MathSciNetADSGoogle Scholar
  13. Pradhan, A. and Pandey, P. (2005). Czechoslovak Journal of Physics 55, 749.CrossRefADSGoogle Scholar
  14. Rendall, A. D. (1995). General Relativity and Gravitation 27, 213.MATHCrossRefMathSciNetGoogle Scholar
  15. Saha, B. and Shikin, G. N. (2004). Czechoslovak Journal of Physics 54, 597.CrossRefMathSciNetADSGoogle Scholar
  16. Saha, B. and Shikin, G. N. (2005). International Journal of Theoretical Physics 44, 1459.MATHCrossRefMathSciNetGoogle Scholar
  17. Szekeres, P. (1975). Communications in Mathematical Physics 41, 55.MATHCrossRefMathSciNetADSGoogle Scholar
  18. Szafron, D. A. and Collins, C. B. (1979). Journal of Mathematical Phyics 20, 2354.CrossRefMathSciNetADSGoogle Scholar
  19. Taruya, A. and Nambu, Y. (1996). Progress of Theoretical Physics 95, 295.CrossRefADSGoogle Scholar
  20. Taub, A. H. (1951). Annals of Mathematics 53, 472.CrossRefMathSciNetGoogle Scholar
  21. Taub, A. H., (1956). Physical Review 103, 454.MATHCrossRefMathSciNetADSGoogle Scholar
  22. Tolman, R. C. (1934). Proceedings of the National Academy of Sciences 20, 169.MATHCrossRefADSGoogle Scholar
  23. Tomimura, N. (1978). II Nuovo Cimento B44, 372.ADSGoogle Scholar
  24. Yazadjiev, S. S. (2003). Classical and Quantum Gravity 20, 3365.MATHCrossRefMathSciNetADSGoogle Scholar
  25. Zhuravlev, V. M., Chervon, S. V., and Shabalkin, D. Y. (1997). Gravitatin & Cosmology 4, 312. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Anirudh Pradhan
    • 1
  • Purnima Pandey
    • 1
  • Sunil Kumar Singh
    • 2
  1. 1.Department of MathematicsHindu Post-graduate CollegeGhazipurIndia
  2. 2.Department of PhysicsS. D. J. Post-graduate CollegeAzamgarhIndia

Personalised recommendations