International Journal of Theoretical Physics

, Volume 46, Issue 5, pp 1431–1441 | Cite as

Hydrodynamics in 5-Dimensional Cosmological Special Relativity

  • Gianluca Gemelli


The dynamics of a perfect fluid is studied in 5-dimensional special relativity, a framework which can be considered the 5-d generalization of cosmological special relativity as well as the flat specialization of 5-d brane world theory. This picture, as described in an earlier paper, directly includes a particle production mechanism. Here it is showed that the source of particle production vanishes if the fluid is isentropic. Moreover it is showed that the hydrodynamical equations can be interpreted in terms of a scale factor, giving rise to a set of equations which simulate in a sense Friedmann cosmology.


5 dymensions relativistic hydrodynamics cosmological relativity friedmann equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anile, A. M. (1989). Relativistic fluids and magneto - fluids Cambridge univ. press, Cambridge - New York.MATHGoogle Scholar
  2. Bonnor, W. B. (1960). Journal of Mathematics and Mechanics 9, 439.MATHMathSciNetGoogle Scholar
  3. Carmeli, M. (1995). Foundations of Physics 25, 1029.CrossRefMathSciNetGoogle Scholar
  4. Carmeli, M. (1996). Foundations of Physics 26, 413.CrossRefMathSciNetGoogle Scholar
  5. Carmeli, M. (2002). Cosmological special relativity. The large scale structure of space, time and velocity (second edition) World Scientific Singapore.Google Scholar
  6. Cissoko, M. (1998). General Relativity and Gravitation 30, 521.MATHCrossRefADSMathSciNetGoogle Scholar
  7. de Campos, M. (2002). General Relativity and Gravitation 34, 1393.MATHCrossRefMathSciNetGoogle Scholar
  8. Ebert, R. (1989). In Proceedings of the Fifth Marcel Grossman Meeting on General Relativity, Part A, B, (Perth, 1988), World Sci. Publishing, Teaneck, NJ.Google Scholar
  9. Gemelli, G. (2006). International Journal of Theoretical Physics ISSN: 0020-7748 (Paper) 1572-9575 (Online) DOI: 10.1007/s10773-006-9187-z.Google Scholar
  10. Greenhow, M. and Moyo, S. (1997). Philosophical Transactions of the Royal Society of London. Series A 355, 551.MATHADSMathSciNetGoogle Scholar
  11. Jantzen, R.T., Carini, P., and Bini, D. (1992). Annals of Physics 215, 1.CrossRefADSMathSciNetGoogle Scholar
  12. Künzle, H. P. (1967). Proceedings of the Royal Society Series A 297, 244.MATHADSGoogle Scholar
  13. Katz, J. and Lyndel-Bell, D. (1991). Classical and Quantum Gravity 8, 2231.CrossRefADSMathSciNetGoogle Scholar
  14. Lichnerowicz, A. (1967). Relativistic hydrodynamics and magneto—hydrodynamics Benjamin, New York.Google Scholar
  15. Lichnerowicz, A. (1994). Magnetohydrodynamics: waves and shock waves in curved space-time, Mathematical physics studies vol. 14, Kluwer academic publishers, Dordrecht-Boston-London.Google Scholar
  16. Lifschitz, A. (1998). In Differential and integral operators (Regensburg, 1995), Operator Theory: Advances and Applications 102, 97, Birkhuser, Basel.MathSciNetGoogle Scholar
  17. Manarini, M. (1948). Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 4, 427.MATHMathSciNetGoogle Scholar
  18. Prigogine, I., Geheniau, J., Gunzig, E., and Nardone, P. (1989). General Relativity and Gravitation 21, 767.MATHCrossRefMathSciNetGoogle Scholar
  19. Wesson, P. S. (1986). Physical Review D 34, 3925.CrossRefADSMathSciNetGoogle Scholar
  20. Wesson, P. S. (1999). Space, time, matter: modern Kaluza-Klein theory World Scientific, Singapore. MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.L. S. B. PascalPomezia (Roma)Italy

Personalised recommendations