Skip to main content
Log in

Half-Differentials versus Spinor Formalism for Fermions in Low-Dimensional Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The description of fermions on curved manifolds or in curvilinear coordinates usually requires a vielbein formalism to define Dirac γ-matrices or Pauli matrices on the manifold. Derivatives of the vielbein also enter equations of motion for fermions through the spin connection, which gauges local rotations or Lorentz transformations of tangent planes.

The present paper serves a dual purpose. First we will see how the zweibein formalism on surfaces emerges from constraining fermions to submanifolds of Minkowski space. In the second part, I will explain how in two dimensions the zweibein can be absorbed into the spinors to form half-order differentials. The interesting point about half-order differentials is that their derivative terms along a two-dimensional submanifold of Minkoski space look exactly like ordinary spinor derivatives in Cartesian coordinates on a planar surface, although there is a prize to pay in the form of a local mass term. The advantage of half-order differentials is that they allow for the use of the conformal field concept of conformal field theory even in low-dimensional fermion systems without conformal symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, R. Half-Differentials versus Spinor Formalism for Fermions in Low-Dimensional Systems. Int J Theor Phys 46, 1334–1359 (2007). https://doi.org/10.1007/s10773-006-9273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9273-2

Keywords

Navigation