International Journal of Theoretical Physics

, Volume 45, Issue 10, pp 1825–1835 | Cite as

Stationary ‘V’ States for Preferred Motions of Many Particles

  • A Kwang-Hua Chu


We use the discrete kinetic theory with the free-orientation parameter being fixed (\(\pi/4\)) to derive the macroscopic velocity field for many particles flowing through a microdomain. Our results resemble qualitatively other hydrodynamical solutions. The V-shaped velocity field changes as the dominant physical parameter (Knudsen number) varies. We also briefly discuss the possible mechanism due to the entropy production along the boundaries.


Knudsen number discrete kinetic model dilute gases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrey, L. (1985). Physics Letters 111A, 45–46.MathSciNetADSGoogle Scholar
  2. Arkeryd, L. and Maslova, N. (1994). Journal of Statistical Physics 77, 1051–1077.MATHMathSciNetCrossRefGoogle Scholar
  3. Broadwell, J. E. (1964). Physics of Fluids 7, 1243–1247.MATHCrossRefGoogle Scholar
  4. Bellomo, N. and Gustafsson, T. (1991). Reviews in Mathematical Physics 3, 137–162.MATHMathSciNetCrossRefADSGoogle Scholar
  5. Bellomo, N. and Gatignol, R. (eds.) (2003). Lecture Notes on the Discretization of the Boltzmann Equation, World Scientific, Singapore.Google Scholar
  6. Bellomo, N. and Kawashima, S. (1990). Journal of Mathematical Physics 31, 245–253.MATHMathSciNetCrossRefADSGoogle Scholar
  7. Cabannes, H. (1980). The Discrete Boltzmann Equation. Theory and Applications, Lecture Notes. University of California, Berkely.Google Scholar
  8. Cabannes, H., Pasol, L., and Roesner, K. G. (2002). Europian Journal of Mechanics B/Fluids 21, 751–760.MATHMathSciNetCrossRefGoogle Scholar
  9. Carleman, T. (1957). Problèmes mathématiques dans la théorie cinétique des gas, Publ. Scient. Inst. Mittag-Leffler, pp. 104–106.Google Scholar
  10. Chu, K.-H. W. (2001). Physica Scripta 64, 423–426.MATHCrossRefADSGoogle Scholar
  11. Chu, W. K.-H. (2001). Applied Mathematics Letters 14, 275–278.MATHMathSciNetCrossRefGoogle Scholar
  12. Chu, A. K.-H. (2004). Physica Scripta 69, 170–175.MATHCrossRefADSGoogle Scholar
  13. Chu, A. K.-H. (2005). Phys/0510041.Google Scholar
  14. Cornille, H. (1987). Journal of Physics A Mathematics and General 20, L1063–L1067.MathSciNetCrossRefADSGoogle Scholar
  15. Courant, R. and Friedriches, K. O. (1948). Supersonic Flow and Shock Waves, Interscience Publ. Inc., New York, p. 15.MATHGoogle Scholar
  16. D'Almeida, H. and Gatognol, R. (2003). Mathematical Models & Methods in Applied Sciences 13, 99–120.MATHMathSciNetCrossRefGoogle Scholar
  17. Deem, G. S. and Zabusky, N.J. (1978). Physical Review Letters 40, 859–862.CrossRefADSGoogle Scholar
  18. Faller, A. J. (2001). Journal of Fluid Mechanics 434, 167–180.MATHMathSciNetCrossRefADSGoogle Scholar
  19. Gatignol, R. (1975). Théorie Cinétique des gaz à Répartition Discrète de Vitesses (Lectures Notes in Physics), Vol. 36, Springer-Verlag, Berlin.Google Scholar
  20. Godunov, S. K. and Sultangazin, U. M. (1971). Russian Mathematical Survey 26, 3–51.MATHMathSciNetGoogle Scholar
  21. Görsch, D. (2002). Mathematical Models & Methods in Applied Sciences 12, 49–76.MATHMathSciNetCrossRefGoogle Scholar
  22. Kawashima, S. and Nishibata, S. (1999). Communication Mathematical Physics 207, 385–409.MATHMathSciNetCrossRefADSGoogle Scholar
  23. Landau, L. D. and Lifshitz, E. M. (1987). Fluid Mechanics, Pergamon Press, Oxford, p. 13, 146.Google Scholar
  24. Platkowski, T. and Illner, R. (1988). SIAM Review 30, 213–255.MATHMathSciNetCrossRefGoogle Scholar
  25. Rossberg, A. G. and Kramer, L. (1998). Physica D 115, 19–28.MATHCrossRefADSGoogle Scholar
  26. Schnute, J. (1975). Canadian Journal of Mathematics 27, 1271–1315.MathSciNetGoogle Scholar
  27. Vedenyapin, V. V., Mingalev, I. V., and Mingalev, O. V. (1995). Russian Academy of Sciences Sbornik Mathematics 80, 271–285.MathSciNetCrossRefGoogle Scholar
  28. Wu, T. Yaotsu, Kao, J., Zhang, J. E. (2005). Acta Mechanica Sinica 26, 1–15.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A Kwang-Hua Chu
    • 1
  1. 1.UrumqiPR China

Personalised recommendations