Information Complexity of Quantum Gates



This paper considers the realizability of quantum gates from the perspective of information complexity. Since the gate is a physical device that must be controlled classically, it is subject to random error. We define the complexity of gate operation in terms of the difference between the entropy of the variables associated with initial and final states of the computation. We argue that the gate operations are irreversible if there is a difference in the accuracy associated with input and output variables. It is shown that under some conditions the gate operation may be associated with unbounded entropy, implying impossibility of implementation.

Key Words

quantum gates quantum computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, C. H. (1982). The thermodynamics of computation—a review. International Journal of Theoretical Physics 21, 905–940.CrossRefADSGoogle Scholar
  2. DiVincenzo, D. P. (1995). Two-bit gates are universal for quantum computation. Physical Review A: Mathematical and General 51, 1015–1022.CrossRefADSGoogle Scholar
  3. Kak, S. (1998). Quantum information in a distributed apparatus. Foundations of Physics 28, 1005; Physics Archive: quant-ph/9804047Google Scholar
  4. Kak, S. (1999). The initialization problem in quantum computing. Foundations of Physics 29, 267–279; quant-ph/9805002.Google Scholar
  5. Kak, S. (2000). Rotating a qubit. Information Sciences 128, 149–154; quant-ph/9910107.Google Scholar
  6. Kak, S. (2001a). Statistical constraints on state preparation for a quantum computer. Pramana 57, 683–688; quant-ph/0010109.Google Scholar
  7. Kak, S. (2001b). Are quantum computing models realistic? Physics Arxiv: quant-ph/0110040.Google Scholar
  8. Kak, S. (2003a). General qubit errors cannot be corrected. Information Sciences 152, 195–202; quant-ph/0206144.Google Scholar
  9. Kak, S. (2003b). Teleportation protocols requiring only one classical bit. Physics Arxiv: quant-ph/0305085.Google Scholar
  10. Knill, E. (2004a). Fault tolerant post-selected quantum computation. Physics Arxiv: quant-ph/0404104.Google Scholar
  11. Knill, E. (2004b). Quantum computing with very noisy devices. Physics Arxiv: quant-ph/0410199.Google Scholar
  12. Knill, E. and Laflamme, R. (1997). A theory of quantum error-correcting codes. Physical Review A: Mathematical and General 55, 900–906.CrossRefADSMathSciNetGoogle Scholar
  13. Kitaev, A. Y. (1997). Quantum computations: algorithms and error correction. Russian Mathematical Surveys 52, 1191–1249.CrossRefMATHMathSciNetADSGoogle Scholar
  14. Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 183.MathSciNetCrossRefMATHGoogle Scholar
  15. Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge University Press.Google Scholar
  16. Steane, A. M. (1999). Efficient fault-tolerant quantum computing. Nature 399, 124–126.CrossRefADSGoogle Scholar
  17. Svore, K., Terhal, B. M., and DiVincenzo, D. P. (2004). Local fault-tolerant quantum computation. Physics Arxiv: quant-ph/0410047.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations