A Note on Invariant Observables

  • Katarína LendelováEmail author


The ergodic theory and particularly the individual ergodic theorem were studied in many structures. Recently the individual ergodic theorem has been proved for MV-algebras of fuzzy sets (Riečan, 2000; Riečan and Neubrunn, 1997) and even in general MV-algebras (Jurečková, 2000). The notion of almost everywhere equality of observables was introduced by B. Riečan and M. Jurečková in Riečan and Jurečková (2005). They proved that the limit of Cesaro means is an invariant observable for P-observables. In this paper show that the assumption of P-observable can be omitted.


the invariant observable the Cesaro means the individual ergodic theory the almost everywhere equality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cignoli, R. L. O., D'Ottaviano, M. L., and Mundici, D. (2000). Algebraic Foudations of Many-valued Reasoning. Kluwer, Dordrecht.Google Scholar
  2. Dvurecenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures. Kluwer, Dortrecht.Google Scholar
  3. Dvurecenskij, A. and Riecan, B. (1980). On the individual ergodic theorem on a logic. Comment. Math. Univ. Carolin. 21, 385–391.MathSciNetzbMATHGoogle Scholar
  4. Harman, B. (1985). Maximal ergodic thorem on a logic. Math. Slovaca 35, 381–386.ADSMathSciNetzbMATHGoogle Scholar
  5. Harman, B. and Riecan, B. (1992). On the individual ergodic theorem in F-quantum spaces. Zeszyty Naukowe Akad. Ekon. w Poznaniu, seria 1, 187, 25–30.Google Scholar
  6. Jurecková, M. (2000). A note on the individual ergodic theorem on product MV-algebras. Int. J. Theor. Physics 39, 757–764.CrossRefzbMATHGoogle Scholar
  7. Lutterová, F. and Pulmannová, S. (1985). On individual ergodic theorem on the Hilbert space logic. Math. Slovaca 35, 361–371.MathSciNetzbMATHGoogle Scholar
  8. Petersen, K. (1983). Ergodic Theory. Cambridge Univ. Press, Cambridge.Google Scholar
  9. Pulmannová, S. (1982). Individual ergodic theorem on a logic. Math. Slovaca 32, 413–416.MathSciNetzbMATHGoogle Scholar
  10. Riecan, B. (1982). Two notes on the individual ergodic theorem. In: Ergodic Theory and related topics, Academic Verlag, Berlin, 169–172.Google Scholar
  11. Riecan, B. (2000). On the individual ergodic theorem in D-posets of fuzzy sets. Czech Math. J. 50(125), 673–680.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Riečan, B. and Jurečková, M. (2005). “QS7” Invariant observables and the individual ergodic theorem. Internat J. Theoret. Phys. 44, 1587–1597. CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. Riecan, B. and Mundici, D. (2002). Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap ed.), Elsevier, Amsterdam, 869–909.CrossRefGoogle Scholar
  14. Riecan, B. and Neubrunn, T. (1997). Integral, Measure, and Ordering. Kluwer, Dordrecht and Ister Science, Bratislava.Google Scholar
  15. Vrábel, P. (1988). On the individual ergodic theorem on a logic. Zborník PF v Nitre, Matematika 4, 79–85.Google Scholar
  16. Walters, P. (1975). Ergodic Theory - Introductory Lectures. Springer, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Faculty of Natural Sciences, Department of MathematicsMatej Bel UniversityBanská BystricaSlovakia

Personalised recommendations