Advertisement

Black Hole Radiation and Volume Statistical Entropy

  • Mario Rabinowitz
Article

Abstract

The simplest possible equation for Hawking radiation \(P_{{\rm SH}} =\frac{{G\rho\, \hbar }}{{90}}\) and other black hole radiated power is derived in terms of black hole density, ρ . Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy S bh∝ (kAc 3)/ℏ G. Variations of S bh can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius R H, p = \({\frac{3}{{2\pi }}})\frac{\hbar}{{R_{\rm H} }}\)which is similar tothe Compton wavelength relation.

Keywords

black hole entropy Hawking radiation black hole density Compton wavelength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bardeen, J. M., Carter, B., and Hawking, S. H. (1973). Communications in Mathametical Physics 31, 161.MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bekenstein, J. D. (1972). Nuovo Cimento Letters 4, 737.CrossRefADSGoogle Scholar
  3. 3.
    Bekenstein, J. D. (1973). Physical Review D7, 2333.ADSMathSciNetGoogle Scholar
  4. 4.
    Bekenstein, J. D. (1974). Physical Review D9, 3292.ADSGoogle Scholar
  5. 5.
    Bekenstein, J. D. (2003). Contemporary Physics 45, 31.CrossRefADSGoogle Scholar
  6. 6.
    Cohn, A., and Rabinowitz, M. (1990). International Journal of Theoretical Physics 29, 215.CrossRefADSGoogle Scholar
  7. 7.
    Hawking, S. W. (1974). Nature 248, 30.CrossRefADSGoogle Scholar
  8. 8.
    Hawking, S. W. (1975). Communications in Mathmatical Physics 43, 199.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Mayer, J. E., and Mayer, G. M. (1940) Statistical Mechanics, Wiley & Sons, NY.MATHGoogle Scholar
  10. 10.
    Rabinowitz, M. (1999). Astrophysics and Space Science 262, 391.MATHCrossRefADSGoogle Scholar
  11. 11.
    Rabinowitz, M. (2001a). International Journal of Theoretical Physics 40, 875 .MATHCrossRefGoogle Scholar
  12. 12.
    Rabinowitz, M. (2001b). Astrophysics and Space Science 277, 409.MATHCrossRefADSGoogle Scholar
  13. 13.
    Sommerfeld, A. (1952, reprinted 1964). Thermodynamics and Statistical Mechanics, Academic Press, NY.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Armor ResearchRedwood CityU.S.A

Personalised recommendations