International Journal of Theoretical Physics

, Volume 45, Issue 4, pp 765–789 | Cite as

The Classical Diffusion-Limited Kronig–Penney System



We have previously discussed the classical diffusive system of the bounded one-dimensional multitrap using the transfer matrix method which is generally applied for studying the energy spectrum of the unbounded quantum Kronig–Penney multibarrier. It was shown, by this method, that for certain values of the relevant parameters the bounded multitrap array have unity transmission and a double-peak phase transitional behavior. We discuss in this work, using the same transfer matrix method, the energy related to the diffusion through the unbounded one-dimensional multitrap and find that it may be expressed in two entirely different ways with different results and consequences. Also, it is shown that, unlike the barriers in the Kronig–Penney case, the energies at one face of the imperfect trap greatly differ from the energies at the other face of the same trap.


Kronig–Penney system transfer matrix imperfect trap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, G. and Wio, H. (1995). Chaos Solitons and Fractals 6, 1; Giacometti, A. and Nakanishi, H. (1994). Physical Review E 50, 1093; Nieuwenhuize, T. and Brandt, H. (1990). Journal of Statistical Physics 59, 53; Torquato, S. and Yeong, C. (1997). Journal of Chemical Physics 106, 8814.MATHCrossRefGoogle Scholar
  2. Ashcroft, N., Mermin, N. D., and Mermin, D. (1976). Solid state physic, International Thomson Publishing, Florence, KY.Google Scholar
  3. Bar, D. (2001). Physical Review E 64, 026108; Bar, D. (2003). Physical Review E 67, 056123.ADSGoogle Scholar
  4. Bar, D. (2004). Physical Review E 70, 016607.ADSGoogle Scholar
  5. Ben-Avraham, D. and Havlin, S. (2000). Diffusion and Reactions in Fractals and Disordered Media, Camgridge university press, Cambridge; Weiss, G. S., Kopelman, R., and Havlin, S. (1989). Physical Review A 39, 466.Google Scholar
  6. Chuang, J. T. and Eisenthal, K. B. (1975). Journal of Chemical Physics 62, 2213.CrossRefADSGoogle Scholar
  7. Collins, F. C. and Kimball, G. E. (1949). Journal of Colloid and Interface Science 4, 425.Google Scholar
  8. Condat, C. A., Sibona, G., and Budde, C. E. (1995). Physical Review E 51, 2839–2843.ADSGoogle Scholar
  9. Dennemeyer, R. (1968). Introduction to Partial Differential Equations and Boundary Values Problems McGraw-Hill, New York.Google Scholar
  10. Kittel, C. (1986). Introduction to Solid State Physics, 6th edn, Wiley, New York.Google Scholar
  11. Mattis, D. C. and Glasser, M. L. (1998). Reviews of Modern Physics 70, 979–1001.CrossRefADSGoogle Scholar
  12. Roepstorff, G. (1994). Path Integral Approach to Quantum Physics, Springer-Verlag, New York.MATHGoogle Scholar
  13. Merzbacher, E. (1961).Quantum Mechanics 2nd edn, Wiley, New York.MATHGoogle Scholar
  14. Tannoudji, C. C., Diu, B., and Laloe F. (1977). Quantum Mechanics, Wiley, New York.Google Scholar
  15. Yu, K. W. (1990). Computers in Physics 4, 176–178.ADSGoogle Scholar
  16. Nadler, W. and Stein, D. L. (1996). Journal of Chemical Physics 104, 1918.CrossRefADSGoogle Scholar
  17. Noyes, R. M. (1954). Journal of Chemical Physics 22, 1349.CrossRefADSGoogle Scholar
  18. Re, M. A. and Budde, C. E. (2000). Physical Review E 61, 2, 1110–1120.ADSGoogle Scholar
  19. Reif, F. (1965). Statistical Physics, McGraw-Hill, New-York.Google Scholar
  20. Smoluchowski, R. V. (1917). Zeitschrift für Physikalische Chemie 29, 129.Google Scholar
  21. Taitelbaum, H., Kopelman, R., Weiss, G. H., and Havlin, S. (1991). Physical Review A 41, 3116; Taitelbaum, H. (1991). Physical Review A 43, 6592.CrossRefADSGoogle Scholar
  22. Varbin, Y. and Sela, G. (1992). Statistical Physics. Vol. 1 (Hebrew edition), Open University Press, Tel Aviv, Israel.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Daniel BarAshdodIsrael

Personalised recommendations