International Journal of Theoretical Physics

, Volume 46, Issue 3, pp 451–470 | Cite as

Classification of the Five-Dimensional Lie Superalgebras Over the Real Numbers

  • N. L. Matiadou
  • A. Fellouris


The purpose of this contribution, is to initiate a classification of Lie superalgebras (LS) of dimension five, over the base field ℝ of real numbers. We use the “graded skew-symmetry” and the “graded Jacobi identity” in order to get restrictions for the commutators and anticommutators of an arbitrary five-dimensional Lie superalgebra L = L 0L 1


Lie Superalgebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backhouse, N. B. (1977). Proc. 6th Int. Colloq. Group Theoretical Methods in Physics, Tubingen.Google Scholar
  2. Backhouse, N. B. (1978a). J. Math. Phys. 19, 2400–2402.MATHCrossRefADSMathSciNetGoogle Scholar
  3. Backhouse, N. B. (1978b). Lect. Notes Phys. 79, 364.Google Scholar
  4. Balantekin, A. B. and Bars, I. (1982). J. Math. Phys. 23, 1239–1247.MATHCrossRefADSMathSciNetGoogle Scholar
  5. Balantekin, A. B. and Bars, I. (1984). J. Phys. A 17, 1573–1578.CrossRefMathSciNetGoogle Scholar
  6. Beckers, J., Dehin, D., and Hussin, V. (1988a). J. Math. Phys. 29, 1705–1711.MATHCrossRefADSMathSciNetGoogle Scholar
  7. Beckers, J., Dehin, D., and Hussin, V. (1988b). J. Phys. A 21, 651–667.CrossRefADSMathSciNetGoogle Scholar
  8. Berele, A. and Regev, A. (1987). Adv. Math. 64, 118–175.MATHCrossRefMathSciNetGoogle Scholar
  9. Brebner, M. A. and Grad, J. (1982). Linear Algebr. Appl. 43, 99–118.MATHCrossRefMathSciNetGoogle Scholar
  10. Bunse-Gerstner, A. (1984). Linear Algebr. Appl. 58, 43–68.MATHCrossRefMathSciNetGoogle Scholar
  11. Corwin, L., Neeman, Y., and Sternberg, S. (1975). Rev. Mod. Phys. 47, 573–603.MATHCrossRefADSMathSciNetGoogle Scholar
  12. Freund, P. G. O. and Kaplansky, I. (1976). J. Math. Phys. 17, 228.MATHCrossRefADSMathSciNetGoogle Scholar
  13. Garvey, S. D., Tisseur, F., Friswell, M. I., Penny, J. E. T., and Prells, U. (2003). Int. J. Numer. Meth. Engng. 57, 1643–1660.MATHCrossRefMathSciNetGoogle Scholar
  14. Hegazi, A. (1999a). Int. J. Theor. Phys. 38, 1735–1739.MATHCrossRefMathSciNetGoogle Scholar
  15. Hegazi, A. (1999b). Int. J. Theor. Phys. 68, 2681–2693.CrossRefMathSciNetGoogle Scholar
  16. Kac, V. G. (1977). Ad. Math. 26, 8–96.MATHCrossRefMathSciNetGoogle Scholar
  17. Kac, V. G. (1978). Lect. Notes Math. 676, 597.Google Scholar
  18. Matiadou, N. L. and Fellouris, A. (2005). Mathematica Balkanica 19, 143–154.MATHMathSciNetGoogle Scholar
  19. Mubarakzyanov, G. M. Izv. Vysshikh Uschebn. Zavedenii Mat., On solvable Lie algebras, No. 1 32, 114; The classification of the real structure of five-dimensional Lie algebras, No. 3 34, 99; Classification of solvable Lie algebras of sixth order with a non nilpotent basis element, No. 4 35, 104; (1963).Google Scholar
  20. Neveu, A. and Schwarz, J. (1971). Nucl. Phys. B 31, 86.CrossRefADSGoogle Scholar
  21. Patera, J., Sharp, R. T., Winterintz, P., Zassenhaus, H. (1976). J. Math. Phys. 17, 986–994.MATHCrossRefADSGoogle Scholar
  22. Pais, A. and Rittenberg, V. (1975). J. Math. Phys. 16, 2062–2073.MATHCrossRefADSMathSciNetGoogle Scholar
  23. Palev, T. D. (1989). J. Math. Phys. 30, 1433–1442.MATHCrossRefADSMathSciNetGoogle Scholar
  24. Salam, A. and Strathdee, J. (1974). Nucl. Phys. B 79, 477.CrossRefADSMathSciNetGoogle Scholar
  25. Scheunert, M., Nahm, W., and Rittenberg, V. (1977). J. Math. Phys. 18, 146–154.MATHCrossRefADSMathSciNetGoogle Scholar
  26. Van der Jeugt, J. (1987). J. Phys. A 20, 809–824.CrossRefADSMathSciNetGoogle Scholar
  27. Wess, J. and Zumino, B. (1974). Nucl. Phys. B 70, 39.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of MathematicsNational Technical University of AthensAthensGreece

Personalised recommendations