Advertisement

International Journal of Theoretical Physics

, Volume 44, Issue 10, pp 1753–1768 | Cite as

Stochastic Spacetime and Brownian Motion of Test Particles

  • L. H. Ford
Article

Abstract

The operational meaning of spacetime fluctuations is discussed. Classical spacetime geometry can be viewed as encoding the relations between the motions of test particles in the geometry. By analogy, quantum fluctuations of spacetime geometry can be interpreted in terms of the fluctuations of these motions. Thus, one can give meaning to spacetime fluctuations in terms of observables which describe the Brownian motion of test particles. We will first discuss some electromagnetic analogies, where quantum fluctuations of the electromagnetic field induce Brownian motion of test particles. We next discuss several explicit examples of Brownian motion caused by a fluctuating gravitational field. These examples include lightcone fluctuations, variations in the flight times of photons through the fluctuating geometry, and fluctuations in the expansion parameter given by a Langevin version of the Raychaudhuri equation. The fluctuations in this parameter lead to variations in the luminosity of sources. Other phenomena that can be linked to spacetime fluctuations are spectral line broadening and angular blurring of distant sources.

Keywords

Brownian motion spacetime fluctuations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. V., and Sarkar, S. (1998). Nature 393, 763, [astro-ph/9712103].CrossRefADSGoogle Scholar
  2. Amelino-Camelia, G. (1999). Nature 398, 216 [gr-qc/9808029].CrossRefGoogle Scholar
  3. Barton, G. (1991a). Journal of Physics A 24, 991.ADSGoogle Scholar
  4. Barton, G. (1991b). Journal of Physics A 24, 5563.ADSGoogle Scholar
  5. Borgman, J. and Ford, L. H. (2004). Physical Review D 70, 064032 [gr-qc/0307043].MathSciNetADSGoogle Scholar
  6. Borgman, J. and Ford, L. H. (2004). Physical Review D 70, 127701 [gr-qc/0406066].MathSciNetADSGoogle Scholar
  7. Calzetta, E., Campos, A., and Verdaguer, E. (1997). Physical Review D 56, 2163 [gr-qc/9704010].CrossRefADSGoogle Scholar
  8. Calzetta, E. and Hu, B. L. (1993). Physical Review D 49, 6636 [gr-qc/9312036].ADSGoogle Scholar
  9. Calzetta, E. and Hu, B. L. (1995). Physical Review D 52, 6770 [gr-qc//9505046].CrossRefADSGoogle Scholar
  10. Caves, C. M. (1980). Physical Review Letters 45, 75.CrossRefADSGoogle Scholar
  11. Caves, C. M. (1981). Physical Review D 23, 1693.CrossRefADSGoogle Scholar
  12. Eberlein, C. (1992a). Journal of Physics A 25, 3015.MathSciNetGoogle Scholar
  13. Eberlein, C. (1992b). Journal of Physics A 25, 3039.MathSciNetGoogle Scholar
  14. Wald, R. M. (1984). General Relativity, University of Chicago Press, Chicago, Sect. 9.2.Google Scholar
  15. Ford, L. H. and Roman, T. A. (2004). Physical Review D [quant-ph/0409093].Google Scholar
  16. Ford, L. H. and Svaiter, N. F. (1996). Physical Review D 54, 2640 [gr-qc/9604052].CrossRefMathSciNetADSGoogle Scholar
  17. Ford, L. H. and Svaiter, N. F. (1997). Physical Review D 56, 2226 [gr-qc/9704050].CrossRefMathSciNetADSGoogle Scholar
  18. Ford, L. H. and Svaiter, N. F. (1998). Physical Review D 58, 065007 [quant-ph/9804056].CrossRefADSGoogle Scholar
  19. Ford, L. H. (1982). Annals of Physics (New York) 144, 238.CrossRefGoogle Scholar
  20. Ford, L. H. (2003). International Journal of Theoretical Physics 42, 1219 [gr-qc/0301045].MathSciNetMATHGoogle Scholar
  21. Ford, L. H. (1995). Physical Review D 51, 1692 [gr-qc/9410047].MathSciNetADSGoogle Scholar
  22. Hu, B. L. and Shiokawa, K. (1998). Physical Review D 57, 3474 [gr-qc/9708023].ADSGoogle Scholar
  23. Jaekel, M. T. and Reynaud, S. (1992a). Quantum Optics 4, 39.MathSciNetADSGoogle Scholar
  24. Jaekel, M. T. and Reynaud, S. (1992b). Journal of Physics I France 2, 149.Google Scholar
  25. Jaekel, M. T. and Reynaud, S. (1993a). Journal of Physics I France 3, 1.Google Scholar
  26. Jaekel, M. T. and Reynaud, S. (1993b). Journal of Physics I France 3, 339.Google Scholar
  27. Kuo, C.-I. and Ford, L. H. (1993). Physical Review D 47, 4510 [gr-qc/9304008].CrossRefADSGoogle Scholar
  28. Martin, R. and Verdaguer, E. (1999). Physical Review D 60, 084008 [gr-qc/9904021].MathSciNetADSGoogle Scholar
  29. Ng, Y. J. and van Dam, H. (2000). Physics Letters B477, 429 [gr-qc/9911054].ADSGoogle Scholar
  30. Phillips, N. G. and Hu, B. L. (1997). Physical Review D 55, 6123 [gr-qc/9611012].CrossRefMathSciNetADSGoogle Scholar
  31. Wu, C.-H. and Ford, L. H. (2001). Physical Review D 64, 045010 [quant-ph/0012144].ADSGoogle Scholar
  32. Wu, C.-H., Kuo, C.-I., and Ford, L. H. (2002). Physical Review A 65, 062102 [quant-ph/0112056].ADSGoogle Scholar
  33. Yu, H. and Chen, J. (2004). Physical Review D 70, 125006 [quant-ph/0412010].ADSGoogle Scholar
  34. Yu, H. and Ford, L. H. (1999). Physical Review D 60, 084023 [gr-qc/9904082].CrossRefMathSciNetADSGoogle Scholar
  35. Yu, H. and Ford, L. H. (2004). Physical Review D 70, 065009 [quant-ph/0406122].MathSciNetADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute of Cosmology, Department of Physics and AstronomyTufts UniversityMedford

Personalised recommendations