International Journal of Theoretical Physics

, Volume 44, Issue 7, pp 1041–1052 | Cite as

Kolmogorov–Sinaj Entropy on MV-Algebras

  • Beloslav Riečan


There is given a construction of the entropy of a dynamical system on arbitrary MV-algebra M. If M is the MV-algebra of characteristic functions of a σ-algebra (isomorphic to the σ-algebra), then the construction leads to the Kolmogorov–Sinaj entropy. If M is the MV-algebra (tribe) of fuzzy sets, then the construction coincides with the Maličký modification of the Kolmogorov–Sinaj entropy for fuzzy sets (Maličký and Riečan, 1986; Riečan and Mundici, 2002; Riečan and Neubrunn, 1997).


Dynamical systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Butnariu, D. and Klement, E. P. (1993). Triangular Norm/based Measures and Games with Fuzzy Conditions, Kluwer, Dordrecht.Google Scholar
  2. Dvurečenskij, A. (2000). Loomis–Sikorski theorem for σ-complete MV-algebras and l-groups. Journal of the Australian Mathematical Society Series A 68, 261–277.Google Scholar
  3. Dvurečenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures, Kluwer, Dordrecht.Google Scholar
  4. Dvurečenskij, A. and Riečan, B. (1999). Weakly divisible MV-algebras and product. Journal of Mathematical Analysis and Applications 234, 208–222.MathSciNetGoogle Scholar
  5. Goodearl, K. (1986). Partially Ordered Abelian Groups with Interpolation. Math, Surveys and Monographs No. 20, American Mathematical Society, Providence, Rhode Island.Google Scholar
  6. Maličký, P. and Riečan, B. (1986). On the entropy of dynamical systems. In Proc. Conf. Ergodic Theory and Related Topics II, H. Michel, ed., Teubner, Leipzig, pp. 135–138.Google Scholar
  7. Marra, V. (2000). Every Abelian l-group is ultrasimplicial. Journal of Algebra 225, 872–884.MATHMathSciNetCrossRefGoogle Scholar
  8. Montagna, F. (2000). An algebraic approach to propositional fuzzy logic. Journal of Logic, Language and Information 9, 91–124.MATHMathSciNetCrossRefGoogle Scholar
  9. Mundici, D. (1986). Interpretation of AFC*-algebras in Lukasiewicz sentential calculus. Journal of Functional Analysis 65, 15–63.MATHMathSciNetCrossRefGoogle Scholar
  10. Mundici, D. (1999). Tensor products and the Loomis–Sikorski theorem for MV-algebras. Advanced Applied Mathematics 22, 227–248.MATHMathSciNetGoogle Scholar
  11. Petrovičová, J. (2000). On the entropy of partitions in product MV-algebras. Soft Computing 4, 41–44.Google Scholar
  12. Petrovičová, J. (2001). On the entropy of dynamical systems in product MV-algebras. Fuzzy Sets and Systems 121, 347–351.MathSciNetGoogle Scholar
  13. Riečan, B. (1999). On the Product MV Algebras, Vol. 16, Tatra Mountains Mathematical Publications, pp. 143–149.Google Scholar
  14. Riečan, B. and Mundici, D. (2002). Probability on MV-algebras. In Handbook of Measure Theory, E. Pap, ed., North Holland, Amsterdam, pp. 869–909.Google Scholar
  15. Riečan, B. and Neubrunn, T. (1997). Integral, Measure, and Ordering, Kluwer, Dordrecht.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.M. Bel UniversityBratislava

Personalised recommendations