Energy–Information Coupling From Classical to Quantum Physics

  • Arcangelo Rossi


The idea of exploiting a supposedly enhanced information content of superposition states in quantum computation seems to invalidate the classical probabilistic definition of information; but this is not necessarily so.


foundations of QM quantum information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohr, N. (1934). Atomic Theory and the Description of Nature, Cambridge University Press, Cambridge, London.Google Scholar
  2. Brillouin, L. (1962). Science and Information Theory, Academic Press, New York.Google Scholar
  3. Bruckner, C. and Zeilinger, A. (1999). Operationally invariant information in quantum measurements. Physical Review Letters 83, 3354.ADSMathSciNetGoogle Scholar
  4. Deutsch, D. (1997). The Fabric of Reality, Penguin Books, London.Google Scholar
  5. Feynman, R. P. (1951). The concept of probability in quantum mechanics. In Proceedings of the Second Berkeley Simposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles, p. 533.Google Scholar
  6. Ghirardi, G. (1997). Un'occhiata alle carte di Dio, il Saggiatore, Milano.Google Scholar
  7. Greenstein, G. and Zajonk, A. G. (1997). The Quantum Challenge. Modern Research on the Foundations of Quantum Mechanics, Jones and Bartlett Publishers, Boston.Google Scholar
  8. Kuhn, T. S. (1962). The Structure of Scientific Revolutions, The University of Chicago Press, Chicago.Google Scholar
  9. Preskill, J. (1999). Quantum Information and Computation, Springer, Berlin.Google Scholar
  10. Shannon, C. and Weaver, W. (1949). The Mathematical Theory of Communication, University of Illinois Press, Urbana.Google Scholar
  11. Wiener, N. (1948). Cybernetics, or Control and Communication in the Animal and the Machine, The Technology Press of MIT, Cambridge, MA.Google Scholar
  12. Wiener, N. (1950). The Human Use of Human Beings, Houghton Mifflin Company, Boston.Google Scholar
  13. Zadeh, L. A. (1965). Fuzzy sets. Information and Control 8, 338.MATHMathSciNetCrossRefGoogle Scholar
  14. Zeilinger, A. (1999). A foundation principle for quantum mechanics. Foundations of Physics 29, 631.MathSciNetCrossRefGoogle Scholar
  15. Zurek, W. H. (1991). Decoherence and the transition from quantum to classical. Physics Today 44, 36.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Arcangelo Rossi
    • 1
  1. 1.Dipartimento di FisicaUniversità di LecceLecceItaly

Personalised recommendations