International Journal of Theoretical Physics

, Volume 44, Issue 9, pp 1649–1662 | Cite as

von Neumann Mutual Information for Anisotropic Coupled Oscillators Interacting with a Single Two-Level Atom

  • M. Sebawe Abdalla
  • M. Abdel-Aty
  • A.-S. F. Obada


We consider the interaction between a two-level atom and two electromagnetic fields injected simultaneously within a cavity, with the interaction between the fields in parametric frequency-converter form. The wave function in Schr ödinger picture is obtained under certain conditions and consequently the density matrix. By employing a generalization of the von Neumann mutual information (in the context of Tsallis' nonextensive statistics) we measure the degree of entanglement for the present system. An important change is observed in the generalized mutual information depending on the entropic index. We also measure the minimum degree of entanglement during the transition from collapse to revival and vice-versa. Successive revival peaks show a lowering of the local maximum point indicating a dissipative irreversible change in the atomic state.


quantum optics quantum information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdalla, M. S., Abdel-Aty, M., and Obada, A.-S. F. (2002). Optics Communications 211, 225.CrossRefADSGoogle Scholar
  2. Abdel-Aty, M. (2000). Journal of Physics B: Atomic Molecular and Optical Physics 33, 2665.CrossRefADSGoogle Scholar
  3. Abdel-Aty, M. (2003). Journal of Modern Optics 50, 161.CrossRefADSMATHMathSciNetGoogle Scholar
  4. Abdel-Aty, M. and Abdalla, M. S. (2002). Physica A 307, 163.Google Scholar
  5. Abdel-Aty, M., Abdalla, M. S., and Obada, A.-S. F. (2002). Journal of Optics B: Quantum Semiclassical Optics 4, S133.ADSGoogle Scholar
  6. Abdel-Aty, M. and Furuichi, S. (2002). Progress of Theoretical Physics 107, 17.CrossRefADSGoogle Scholar
  7. Araki, H. and Lieb, E. (1970). Communications in Mathematical Physics 18, 160.CrossRefMathSciNetGoogle Scholar
  8. Arimitsu, T. and Arimitsu, N. (2000). Journal of Physics A 33, L235.ADSMathSciNetGoogle Scholar
  9. Beck, C. (2000a). Physica A 277, 115.CrossRefGoogle Scholar
  10. Beck, C. (2000b). Physica A 286, 164.CrossRefADSGoogle Scholar
  11. Beck, C. and Schlogl, F. (1993). Thermodynamics of Chaotic Systems: An Introduction, Cambridge University Press, Cambridge, UK.Google Scholar
  12. Bediaga, I., Curado, E. M. F., and Miranda, J. (2000). Physica A 286, 156.CrossRefADSGoogle Scholar
  13. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., and Wootters, W. K. (1997). Physical Review A 54, 3824.ADSMathSciNetGoogle Scholar
  14. Bohr, T. and Tel, T. (1988). Thermodynamics of fractals. In Directions in Chaos 2, Hao Bai-lin, ed., World Scientific, Singapore.Google Scholar
  15. Eckmann, J.-P. and Ruelle, D. (1985). Reviews of Modern Physics 57, 617.ADSMathSciNetGoogle Scholar
  16. Fick, E. and Sauerman, G. (1990). The Quantum Statistics of Dynamic Processes, Springer-Verlag, Berlin.Google Scholar
  17. Furuichi, S. and Abdel-Aty, M. (2001). Journal of Physics A: Mathematical and General 34, 6851.CrossRefADSMathSciNetGoogle Scholar
  18. Furuichi, S. and Ohya, M. (1999). Letters in Mathematical Physics 49, 279.CrossRefMathSciNetGoogle Scholar
  19. Horodecki, M., Horodecki, P., and Horodecki, R. (2000). Physical Review Letters 84, 2014.ADSMathSciNetGoogle Scholar
  20. Jaynes, E. T. (1963). In Statistical Physics, W. K. Ford, ed., Benjamin, New York.Google Scholar
  21. Katz, A. (1967). Statistical Mechanics, Freeman, San Francisco.Google Scholar
  22. Kraus, K. (1983). States, Effects, and Operations, Springer, Berlin.Google Scholar
  23. Lavagno, A., Kaniadakis, G., Rego-Monteiro, M., Quarati, P., and Tsallis, C. (1998). Astrophysical Letters Communication 35, 449.ADSGoogle Scholar
  24. Ohya, M. (1983). IEEE Transactions on Information Theory 29, 770.CrossRefMATHGoogle Scholar
  25. Phoenix, S. J. D. and Knight, P. L. (1988). Annals of Physics (New York) 186, 381.CrossRefGoogle Scholar
  26. Phoenix, S. J. D. and Knight, P. L. (1991a). Physical Review A 44, 6023.CrossRefADSGoogle Scholar
  27. Phoenix, S. J. D. and Knight, P. L. (1991b). Physical Review Letters 66, 2833.CrossRefADSGoogle Scholar
  28. Plastino, A. R. and Plastino, A. (1993). Physics Letters A 174, 384.CrossRefADSMathSciNetGoogle Scholar
  29. Plastino, A. R. and Plastino, A. (1995). Physica A 222, 347.CrossRefADSMathSciNetGoogle Scholar
  30. Plenio, M. B. and Vedral, V. (1998). Physical Review A 57, 1619.ADSGoogle Scholar
  31. Tsallis, C. (1995). Physica A 221, 277.CrossRefADSMathSciNetGoogle Scholar
  32. Tsallis, C. (2002). Physica A 305, 1.CrossRefADSMATHMathSciNetGoogle Scholar
  33. Tsallis, C., Mendes, R. S., and Plastino, A. R. (1998). Physica A 261, 534.CrossRefGoogle Scholar
  34. Tsallis, C. J. (1988). Statistical Physics 52, 479.MATHMathSciNetGoogle Scholar
  35. Vedral, V., Plenio, M. B., Rippin, M. A., and Knight, P. L. (1997). Physical Review Letters 78, 2275.CrossRefADSMathSciNetGoogle Scholar
  36. Vidiella-Barranco, A. (1999). Physical Review A 260, 335.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. Sebawe Abdalla
    • 1
    • 4
  • M. Abdel-Aty
    • 2
  • A.-S. F. Obada
    • 3
  1. 1.Department of Mathematics, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceSouth Valley UniversitySohagEgypt
  3. 3.Department of Mathematics, Faculty of ScienceAl-Azher UniversityNasser cityEgypt
  4. 4.Department of Mathematics, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations