Advertisement

International Journal of Theoretical Physics

, Volume 44, Issue 9, pp 1383–1398 | Cite as

Ordered and Periodic Chaos of the Bounded One-Dimensional Multibarrier Potential

Article
  • 38 Downloads

Abstract

Numerical analysis indicates that there exists an unexpected new ordered chaos for the bounded one-dimensional multibarrier potential. For certain values of the number of barriers, repeated identical forms (periods) of the wavepackets result upon passing through the multibarrier potential.

Keywords

bounded multibarrier array chaos Lanczos tridiagonalization method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arecchi, F. T., Giacomelli, G., Ramazza, R. I., and Residori, S. (1990). Physical Review Letters 65, 2531.CrossRefADSGoogle Scholar
  2. Ashkenazi, Y., Horwitz, L. P., Levitan, J., Lewkowicz, M., and Rothschild, Y. (1995). Physical Review Letters 75, 1070.ADSGoogle Scholar
  3. Bar, D. and Horwitz, L. P. (2002). European Physics Journal B 25, 505.ADSGoogle Scholar
  4. Ben-Avraham, D. and Havlin, S. (2000). Diffusion and Reactions in Fractals and Disordered Media, Camgridge University Press, Cambridge, UK.Google Scholar
  5. Brody, T. A., Flores, J., French, J. B., Mello, P. A., Pandey, A., and Wong, S. S. M. (1985). Review of Modern Physics 53, 385.ADSMathSciNetGoogle Scholar
  6. Cullum, J. and Willoughby, R. A. (1980). Linear Algebra and its Applications, 29, 63.CrossRefMathSciNetGoogle Scholar
  7. Cullum, J. and Willoughby, R. A. (1981). Journal of Computational Physics 44 329.CrossRefMathSciNetGoogle Scholar
  8. Cullum, J. and Willoughby, R. A. (1985). Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Birkhauser, Boston.Google Scholar
  9. Glauber, R. J. (1963). Physical Review 131, 2766.CrossRefADSMathSciNetGoogle Scholar
  10. Haller, E., Koppel, H., and Cederbaum, L. S. (1983). Chemical and Physical Letters 101, 215–220.ADSGoogle Scholar
  11. Hondou, T. and Sawada, Y. (1995). Physical Review Letters 75, 3269.CrossRefADSGoogle Scholar
  12. Kaneko, K. (1984). Progress in Theoretical Physics 72, 480.ADSMATHMathSciNetGoogle Scholar
  13. Lanczos, C. (1950). Journal of Research of the National Bureau of Standards 45, 255.MathSciNetGoogle Scholar
  14. Lewenkopf, C. H. (1990). Physical Review A 42, 2431.CrossRefADSGoogle Scholar
  15. Marko, H. (1995). Quantum Mechanics Using Maple, Springer, Berlin.Google Scholar
  16. Merzbacher, E. (1961). Quantum Mechanics, 2nd edn., Wiley, New York.Google Scholar
  17. Otsuka, K. (1990). Physical Review A 43, 618.ADSGoogle Scholar
  18. Pattanayak, A. K. and Schieve, W. C. (1994). Physical Review Letters 72, 2855CrossRefADSGoogle Scholar
  19. Reichel, L. E. (1992). The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations, Springer, Berlin.Google Scholar
  20. Swanson, M. (1992). Path Integral and Quantum Processes, Academic Press, New York; Klauder, J. R. and Sudarshan, E. C. G. (1968). Fundamentals of Quantum Optics, W. A. Benjamin, New York.Google Scholar
  21. Wobst, A., Ingold, G.-L., Hanggi, P., and Weinmann, D. (2003). Physical Review B 68, 085103.CrossRefADSGoogle Scholar
  22. Zaslavsky, G. M. (1981). Physics Report 80, 157.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of PhysicsBar Ilan UniversityRamat GanIsrael

Personalised recommendations