Advertisement

International Journal of Theoretical Physics

, Volume 44, Issue 4, pp 493–528 | Cite as

Quantum Vacuum Radiation and Detection Proposals

  • Haret C. Rosu
Article

Abstract

We first review the 20-year-old results of Letaw on stationary vacuum radiation patterns originating from world lines defined as Frenet–Serret curves. The corresponding body of literature as well as the experimental proposals that have been suggested to detect quantum vacuum field radiation patterns, are shortly presented and some related topics, such as the anomalous Doppler effect and the decay of accelerated protons are also included.

Keywords

Frenet–Serret invariants vacuum radiation anomalous Doppler effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L. F. and Wise, M. B. (1981). American Journal of Physics 49, 37.Google Scholar
  2. Artru, X. (1988). Physics Letters A 128, 302.Google Scholar
  3. Audretsch, J., Müller, R., and Holzmann, M. (1995). Classical and Quantum Gravity 12, 2927.Google Scholar
  4. Barber, D. P. and Mane, S. R. (1988). Physical Review A 37, 456.PubMedGoogle Scholar
  5. Barshay, S. and Troost, W. (1978). Physics Letters B 73, 437.Google Scholar
  6. Baryshevskii, V. G. and Dubovskaya, I. Ya. (1976). Soviet Physics-Doklady 21, 741.Google Scholar
  7. Bautista, E. (1993). Physical Review D 48, 783.Google Scholar
  8. Belkacem, A., Cue, N., and Kimball, J. C. (1985). Physics Letters A 111, 86.Google Scholar
  9. Belkacem, A., et al. (1986). Physics Letters B 177, 211.Google Scholar
  10. Bell, J. S. and Leinaas, J. M. (1983). Nuclear Physics B 212, 131.Google Scholar
  11. Bell, J. S., Hughes, R. J., and Leinaas, J. M. (1985). Zeitschrift für Physik C 28, 75.Google Scholar
  12. Bell, J. S. and Leinaas, J. M. (1987). Nuclear Physics B 284, 488.Google Scholar
  13. Bini, C., De Zorzi, G., Diambrini-Palazzi, G., Di Cosimo, G., Di Domenico, A., Gauzzi, P., and Zanello, D. (1991). Physics Letters B 262, 135.Google Scholar
  14. Bini, D., Jantzen, R. T., and Merloni, A. (1999). Classical and Quantum Gravity 16, 1.Google Scholar
  15. Bolotovski, B. M. and Bykov, V. P. (1989). Radiofizika 32, 386.Google Scholar
  16. Brevik, I. and Kolbenstvedt, H. (1989). Nuovo Cimento B 103, 45.Google Scholar
  17. Brown, L. S. and Gabrielse, G. (1986). Reviews of Modern Physics 58, 233.Google Scholar
  18. Cai, Y. Q., Lloyd, D. G., and Papini, G. (1993). Physics Letters A 178, 225.Google Scholar
  19. Candelas, P. and Sciama, D. W. (1977). Physical Review Letters 38, 1372.Google Scholar
  20. Caso, C., et al. (1998). European Physics Journal C 3, 1.Google Scholar
  21. Caticha, A. (1992). Physical Review B 45, 9541.Google Scholar
  22. Chen, P. and Tajima, T. (1999). Physical Review Letters 83, 256.Google Scholar
  23. Cochran, W. (1989). American Journal of Physics 57, 1039.Google Scholar
  24. Cugliandolo, L. F., Kurchan, J., and Peliti, L. (1997). Physical Review E 55, 3898 (condmat/9611044).Google Scholar
  25. Darbinian, S. M., Ispirian, K. A., and Margarian, A. T. (1989). Preprint Yerevan Physics Institute YERPHY-1188(65)-89 (August 1989).Google Scholar
  26. Darbinian, S. M., Ispirian, K. A., and Margarian, A. T. (1991). Soviet Journal of Nuclear Physics 54, 364.Google Scholar
  27. Darbinian, S. M., Ispirian, K. A., and Margarian, A. T. (1991). Yadernaya Fizika 54, 600.Google Scholar
  28. Darbinian, S. M., Ispiryan, K. A., Ispiryan, M. K., and Margaryan, A. T. (1990). JETP Letters 51, 110.Google Scholar
  29. Dehning, B., Melissinos, A. C., Perrone, F., Rizzo, C., von Holtey, G. (1990). Physics Letters B 249, 145.Google Scholar
  30. Denardo, G. and Percacci, R. (1978). Nuovo Cimento B 48, 81.Google Scholar
  31. Derbenev, Ya. S. and Kondratenko, A. M. (1973). Soviet Physics-JETP 37, 968.Google Scholar
  32. Dey, J., et al. (1993). Physics Letters A 172, 203.Google Scholar
  33. Didenko, A. N., et al. (1983). Pis’ma v JTF 9, 1207.Google Scholar
  34. Dodonov, V. V., Klimov, A. B., and Nikonov, D. E. (1993). Physical Review A 47, 4422.PubMedGoogle Scholar
  35. Dubovskaya, I. Ya., et al. (1993). Journal of Physics: Condensation Matter 5, 7771.Google Scholar
  36. Eberlein, C. (1996a). Physical Review Letters 76, 3842.Google Scholar
  37. Eberlein, C. (1996b). Physical Review A 53, 2772.Google Scholar
  38. Exartier, R. and Peliti, L. (2000). European Physics Journal B 16, 119 (cond-mat)/9910412.Google Scholar
  39. Feynman, R. and Vernon, F. (1963). Annals of Physics 24, 118.Google Scholar
  40. Frank, I. M. (1979). Uspeki Fizicheskii Nauk 129, 685; Vavilov-*Cherenkov Radiation. Theoretical Aspects, Nauka, Moskow, 1988.Google Scholar
  41. Frolov, V. and Novikov, I. (1993). Physical Review D 48, 4545.Google Scholar
  42. Frolov, V. P. and Ginzburg, V. L. (1986). Physics Letters A 116, 423.Google Scholar
  43. Ghose, P. and Home, D. (1994). Physics Letters A 191, 362.Google Scholar
  44. Ginzburg, N. S. (1979). Radiofizika 22, 470.Google Scholar
  45. Ginzburg, V. L. (1993). In E. Wolf, ed., Progress in Optics XXXII, Elsevier (Russian version in FIAN, Vol. 176, Nauka, Moskow, 1986). The 1993 version is updated and has a new section with comments on acceleration radiation.Google Scholar
  46. Ginzburg, V. L. and Fain, V. M. (1958). JETF 35, 817.Google Scholar
  47. Ginzburg, V. L. and Frank, I. M. (1947). Doklady Akademii Nauk 56, 583.Google Scholar
  48. Ginzburg, V. L. and Syrovatskii, S. I. (1965). Uspeki Fizicheskii Nauk 87, 65.Google Scholar
  49. Gradshteyn, I. S. and Ryzhik, I. M. (1980). Table of Integrals, Series and Products, Academic Press, New York.Google Scholar
  50. Grishchuk, L., Haus, H. A., and Bergman, K. (1992). Physical Review D 46, 1440.Google Scholar
  51. Hacyan, S. and Sarmiento, A. (1986). Physics Letters B 179, 287.Google Scholar
  52. Higuchi, A., Matsas, G. E. A., and Sudarsky, D. (1992a). Physical Review D 46, 3450.Google Scholar
  53. Higuchi, A., Matsas, G. E. A., and Sudarsky, D. (1992b). Physical Review D 45, R3308.Google Scholar
  54. Hizhnyakov, V. V. (1992). Quantum Optics 4, 277.Google Scholar
  55. Honig, E., Schucking, E. L., and Vishveshwara, C. V. (1974). Journal of Mathematical Physics 15, 774.Google Scholar
  56. Horibe, M. (1979). Progress of Theoretical Physics 61, 661.Google Scholar
  57. Hosoya, A. (1979). Progress of Theoretical Physics 61, 280.Google Scholar
  58. Hu, B. L. and Johnson, P. R. (2002). QABP-2, World Scientific, Singapore, quant-ph/0012132.Google Scholar
  59. Iyer, B. R. and Vishveshwara, C. V. (1988). Classical and Quantum Gravity 5, 961.Google Scholar
  60. Iyer, B. R. and Vishveshwara, C. V. (1993). Physical Review D 48, 5706, gr-qc/9310019.Google Scholar
  61. Jadczyk, A. (1995). Progress of Theoretical Physics 93, 631.Google Scholar
  62. Jasper, S. J. (1947). Bulletin of the École Polytechnical Jassy 2, 262.Google Scholar
  63. Johnson, J. R., Prepost, R., Wiser, D. E., Murray, J. J., Schwitters, R. F., and Sinclair, C. K. (1993). Nuclear Instruments and Methods 204, 261.Google Scholar
  64. Kühne, M. (1989). New Developments and Applications in Optical Radiometry, Institute of Physics Conference Series No. 92, IOP Publishing Ltd.Google Scholar
  65. Kandrup, H. E. and O’Neill, E. (1993). Physical Review D 48, 4534.Google Scholar
  66. Kats, Y., Kessler, D. A., and Rabin, Y. (2002). Physical Review E 65, 020801.Google Scholar
  67. Kim, S. K., Soh, K. S., and Yee, J. H. (1987). Physical Review D 35, 557.Google Scholar
  68. Kirsebom, K., et al. (2001). Physical Review Letters 87, 054801.PubMedGoogle Scholar
  69. Klein, A. and Landau, L. J. (1981). Journal of Functional Analysis 42, 368.Google Scholar
  70. Klyshko, D. N. (1991). Physics Letters A 154, 433.Google Scholar
  71. Korol, A. V., Solov’yov, A. V., and Greiner, W. (2002). Journal of Physics G: Nuclear and Particle Physics 28, 627.Google Scholar
  72. Kröger, H. (1997). Physical Review A 55, 951.Google Scholar
  73. Kurian, V. E., Pirojenko, A. V., and Florov, V. P. (1988). On the Possibility of Population Inversion in Quantum Systems Moving Uniformly on a Circle in a Medium, FIAN preprint 142; KSF 10, 54.Google Scholar
  74. Kuzelyev, M. V. and Rukhadze, A. A. (1989). Fizika Plasmy 15, 1122.Google Scholar
  75. Law, C. K. (1994). Physical Review A 49, 433.PubMedGoogle Scholar
  76. Lee, S. Y. (2000). Accelerator Physics, World Scientific, Singapore.Google Scholar
  77. Leinaas, J. (1991). Europhysics News 22, 78.Google Scholar
  78. Letaw, J. R. (1981). Physical Review D 23, 1709.Google Scholar
  79. Letaw, J. R. and Pfautsch, J. D. (1980). Physical Review D 22, 1345.Google Scholar
  80. Letaw, J. R. and Pfautsch, J. D. (1981). Physical Review D 24, 1491.Google Scholar
  81. Levin, O., Peleg, Y., and Peres, A. (1993). Journal of Physics A: Mathematical and General 26, 3001.Google Scholar
  82. Man’ko, V. I. and Vilela Mendes, R. (1999). Physics Letters A 263, 53 (physics/9712022).Google Scholar
  83. Matsas, G. E. A. and Vanzella, D. A. T. (1999). Physical Review D 59, 094004.Google Scholar
  84. McDonald, K. T. (1987). In Proceedings of the 1987 IEEE Particle Acceleration Conference, Vol. 2, p. 1196.Google Scholar
  85. McDonald, K. T. (1999). The Hawking-Unruh temperature and damping in a linear focusing channel. In QABP 4-1, World Scientific, Singapore, physics/0003061.Google Scholar
  86. Meyer, P. P. (1985). Journal of Physics A: Mathematical and General 18, 2235.Google Scholar
  87. Milton, K. A., Comment on Sonoluminescence as Quantum Vacuum Radiation, quant-ph/9608003.Google Scholar
  88. Moore, G. T. (1970). Journal of Mathematical Physics 11, 2679.Google Scholar
  89. Naryshkina, L. G. (1962). JETF 43, 953.Google Scholar
  90. Nemtsov, B. E. (1984). Pis’ma v JTF 10, 588.Google Scholar
  91. Nemtsov, B. E. and Eidman, V. Ya. (1984). JETF 87, 1192.Google Scholar
  92. Nezlin, M. V. (1982). Dynamics of Beams in Plasmas, in Russian, Energoizdat.Google Scholar
  93. Parentani, R. and Potting, R. (1989). Physical Review Letters 63, 945.PubMedGoogle Scholar
  94. Pfirsch, D. (1991). Negative-energy Modes in Collisionless Kinetik Theories and Their Possible Relation to Nonlinear Instabilities, series of lectures at the Plasma College, ICTP-Trieste (June 1991).Google Scholar
  95. Pringle, L. N. (1989). Physical Review D 39, 2178.Google Scholar
  96. Rogers, J. (1988). Physical Review Letters 61, 2113.PubMedGoogle Scholar
  97. Rosu, H. (1994). Nuovo Cimento B 109, 423 and also gr-qc/9412033r.Google Scholar
  98. Rosu, H. (1996). Nuovo Cimento B 111, 507.Google Scholar
  99. Rosu, H. (1999). Physics World 12, 21, physics/9910015.Google Scholar
  100. Rosu, H. C. (2001). Gravitation and Cosmology 7, 1, gr-qc/9406012.Google Scholar
  101. Rosu, H. C. (2002). Artificial Black Holes, World Scientific, Singapore, pp. 307–334, grqc/0012083.Google Scholar
  102. Scully, M. O., Kocharovsky, V. V., Belyanin, A., Fry, E., and Capasso, F. (2003). Physical Review Letters 91, 243004, quant-ph/0305178.PubMedGoogle Scholar
  103. Sokolov, A. A. and Ternov, I. M. (1963). Doklady Akademii Nauk 153, 1052–1054.Google Scholar
  104. Sokolov, A. A. and Ternov, I. M. (1964). Soviet Physics Doklady 8, 1203.Google Scholar
  105. Sornette, D. (1990). European Journal of Physics 11, 334.Google Scholar
  106. Synge, J. L. (1967). Proceeding of the Royal Irish Academy A 65, 27.Google Scholar
  107. Tan, J. and Gabrielse, G. (1989). Applied Physics Letters 55, 2144.Google Scholar
  108. Tan, J. and Gabrielse, G. (1993) Physical Review A 48, 3105.PubMedGoogle Scholar
  109. Uggerhøj, U., private communication during QABP-3.Google Scholar
  110. Unauthored (1991). CERN Courier 31, 2.Google Scholar
  111. Unruh, W. G. and Wald, R. M. (1984). Physical Review D 29, 1047.Google Scholar
  112. Vanzella, D. A. T. and Matsas, G. E. A. (2001). Physical Review Letters 87, 151301.PubMedGoogle Scholar
  113. Vanzella, D. A. T. and Matsas, G. E. A. (2001). Physical Review D 63, 014010.Google Scholar
  114. Visser, M. (2001). Matters of Gravity, Vol. 17, Spring 2001, gr-qc/0102044.Google Scholar
  115. Yablonovitch, E. (1989). Physical Review Letters 62, 1742.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Applied MathematicsPotosinian Institute of Science and TechnologySan Luis PotosiMexico

Personalised recommendations