An efficient sentimental analysis using hybrid deep learning and optimization technique for Twitter using parts of speech (POS) tagging


The topic sentiment analysis is like a buzz word among researchers with the advancements in business and social network analysis. Sentiment analysis is the process of recognizing, grouping and classifying the sentiments or opinions conveyed over the social networks creating an immense measure of emotions with rich information as tweets, announcements, blog entries and more. Sentiment analysis considered to be an exceptionally valuable technique in artificial intelligence and is widely used for opinion mining and parts of speech (POS) tagging. Twitter is one among the social network with large number users expressing their thoughts or opinions in a precise and simple way. Analysis of Twitter data is complex compared to other social network data with the existence of slang words and incorrect spellings in a short sentence format. Twitter only permits a maximum of 280 characters per tweet. There were multiple approach such as knowledge based and Deep learning based approach for sentiment analysis using text data. POS is considered as one the required tools in natural language processing (NLP) and Deep learning applications. In this paper, we analyze the tweets of the individual person using hybrid deep learning (HDL) techniques. The proposed system preprocesses the input data before applying HDL techniques. Sentiment analysis in this research is applied using the five-point scale classification as highly negative, negative, neutral, positive and highly positive. The proposed work results in better accuracy and takes less time with a greater number of tweets in comparison with other extensively used models like Random forest, Naive Bayes, and decision tree classifiers. By analyzing various classifiers results in terms of accuracy and precision, ANN achieved 92% accuracy and 91.3% precision, its quite improved results than the other classifiers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

  2. 2.


  1. Abid, F., Alam, M., Yasir, M., & Li, C. (2019). Sentiment analysis through recurrent variants latterly on convolutional neural network of Twitter. Future Generation Computer Systems, 95, 292–308.

    Article  Google Scholar 

  2. Alharbi, A. S. M., & de Doncker, E. (2019). Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cognitive Systems Research, 54, 50–61.

    Article  Google Scholar 

  3. Al-Twairesh, N., & Al-Negheimish, H. (2019). Surface and deep features ensemble for sentiment analysis of arabic tweets. IEEE Access, 7, 84122–84131.

    Article  Google Scholar 

  4. Chen, R. C. (2019). User rating classification via deep belief network learning and sentiment analysis. IEEE Transactions on Computational Social Systems, 6(3), 535–546.

    Article  Google Scholar 

  5. Cheng, K., Yue, Y., & Song, Z. (2020). Sentiment classification based on part-of-speech and self-attention mechanism. IEEE Access, 8, 16387–16396.

    Article  Google Scholar 

  6. Dragoni, M., & Petrucci, G. (2017). A neural word embeddings approach for multi-domain sentiment analysis. IEEE Transactions on Affective Computing, 8(4), 457–470.

    Article  Google Scholar 

  7. Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(1), 5.

    Article  Google Scholar 

  8. Feizollah, A., Ainin, S., Anuar, N. B., Abdullah, N. A. B., & Hazim, M. (2019). Halal products on Twitter: Data extraction and sentiment analysis using stack of deep learning algorithms. IEEE Access, 7, 83354–83362.

    Article  Google Scholar 

  9. Gao, Z., Feng, A., Song, X., & Wu, X. (2019). Target-dependent sentiment classification with BERT. IEEE Access, 7, 154290–154299.

    Article  Google Scholar 

  10. Hamdi, E., Rady, S., & Aref, M. (2018, September). A convolutional neural network model for emotion detection from tweets. In International Conference on Advanced Intelligent Systems and Informatics (pp. 337–346).Cham: Springer.

  11. Kabir, M. F., Abdullah-Al-Mamun, K., & Huda, M. N. (2016, May). Deep learning based parts of speech tagger for Bengali. In Proceedings of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV) (pp. 26–29). IEEE.

  12. Kumar, N. S., & Malarvizhi, N. (2020). Bi-directional LSTM–CNN combined method for sentiment analysis in part of speech tagging (PoS). International Journal of Speech Technology Springer, 23, 373–380.

    Article  Google Scholar 

  13. Kumar, A., Narapareddy, V. T., Srikanth, V. A., Neti, L. B. M., & Malapati, A. (2020). Aspect-based sentiment classification using interactive gated convolutional network. IEEE Access, 8, 22445–22453.

    Article  Google Scholar 

  14. Lin, Y., Li, J., Yang, L., Xu, K., & Lin, H. (2020). Sentiment analysis with comparison enhanced deep neural network. IEEE Access, 8, 78378–78384.

    Article  Google Scholar 

  15. Mejova, Y. (2009). Sentiment analysis: An overview. Comprehensive exam paper. Computer Science Department, 1–34.

  16. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.

    Article  Google Scholar 

  17. Noor, I. M., & Turan, M. (2020). Sentiment analysis on new currency in kenya using Twitter dataset. IJID (International Journal on Informatics for Development), 8(2), 81–87.

    Article  Google Scholar 

  18. Pak, A., & Paroubek, P. (2010, May). Twitter as a corpus for sentiment analysis and opinion mining. In LREc (Vol. 10, No. 2010, pp. 1320-1326).

  19. Pasquier, C., da Costa Pereira, C. and Tettamanzi, A.G., 2020, August. Extending a Fuzzy Polarity Propagation Method for Multi-Domain Sentiment Analysis with Word Embedding and POS Tagging. In Proceedings of the ECAI 2020: 24th European Conference on Artificial Intelligence, August 29-September 8, Santiago de Compostela, Spain (Vol. 325, pp. 2140–2147). IOS Press.

  20. Razak, C. S. A., Zulkarnain, M. A., AbHamid, S. H., Anuar, N. B., Jali, M. Z., & Meon, H. (2020). Tweep: a system development to detect depression in Twitter posts. In R. Alfred, H. Iida, A. A. Ibrahim, & Y. Lim (Eds.), Computational Science and Technology (pp. 543–552). Singapore: Springer.

    Google Scholar 

  21. Rida-E-Fatima, S., Javed, A., Banjar, A., Irtaza, A., Dawood, H., Dawood, H., & Alamri, A. (2019). A multi-layer dual attention deep learning model with refined word embeddings for aspect-based sentiment analysis. IEEE Access, 7, 114795–114807.

    Article  Google Scholar 

  22. Rosenthal, S., Farra, N., & Nakov, P. (2019). SemEval-2017 task 4: Sentiment analysis in Twitter. arXiv preprint . arXiv:1912.00741.

  23. Rosenthal, S., Farra, N., & Nakov, P. (2019). SemEval-2017 task 4: Sentiment analysis in Twitter. arXiv preprint arXiv:1912.00741. Twitter sentiment analysis with deep convolutional neural networks

  24. Salur, M. U., & Aydin, I. (2020). A novel hybrid deep learning model for sentiment classification. IEEE Access, 8, 58080–58093.

    Article  Google Scholar 

  25. Seo, S., Kim, C., Kim, H., Mo, K., & Kang, P. (2020). Comparative study of deep learning-based sentiment classification. IEEE Access, 8, 6861–6875.

    Article  Google Scholar 

  26. Shaukat, Z., Zulfiqar, A. A., Xiao, C., Azeem, M., & Mahmood, T. (2020). Sentiment analysis on IMDB using lexicon and neural networks. SN Applied Sciences, 2(2), 1–10.

    Article  Google Scholar 

  27. Turney, P. D. (2002, July). Thumbs up or thumbs down?Semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 417-424). Association for Computational Linguistics.

  28. Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment analysis for E-commerce product reviews in chinese based on sentiment lexicon and deep learning. IEEE Access, 8, 23522–23530.

    Article  Google Scholar 

  29. Zhou, X., Tao, X., Yong, J., & Yang, Z. (2013, June). Sentiment analysis on tweets for social events. In Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 557-562). IEEE.

Download references

Author information



Corresponding author

Correspondence to R. Ramalakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Divyapushpalakshmi, M., Ramalakshmi, R. An efficient sentimental analysis using hybrid deep learning and optimization technique for Twitter using parts of speech (POS) tagging. Int J Speech Technol (2021).

Download citation


  • Sentiment analysis
  • Deep learning techniques
  • Twitter
  • Artificial neural network