International Journal of Speech Technology

, Volume 21, Issue 1, pp 85–91 | Cite as

Vocal parameters analysis of smoker using Amazigh language

  • Ouissam Zealouk
  • Hassan Satori
  • Mohamed Hamidi
  • Naouar Laaidi
  • Khalid Satori
Article
  • 21 Downloads

Abstract

In this paper we examined the human voice of 20 adults (20 smokers and 20 non-smokers) to determine the effects of cigarette smoking on formants frequency, pitch, shimmer and jitter based on 3 Amazigh language vowels (A, I, U). The statistical data parameters are collected from male Moroccan speakers aged between 26 and 50 years old. Our results show that, the pitch values of smokers are lower compared to those of non-smokers. Also, smokers’ formants frequency F1 and F2 are close to non-smokers ones for the three considered vowels .Whereas, F3 and F4 are lower in the case of smokers. Shimmer and Jitter analysis showed higher values for these parameters among smoker.

Keywords

Pitch Formants frequency Shimmer Jitter Amazigh language Smoking’s 

References

  1. Ataa Allah, F., & Boulaknadel, S. (2012). Natural language processing for Amazigh language: Challenges and future directions, In: Proceedings of the Workshop on Language Technology for Normalisation of Less-Resourced Languages (vol. 19, pp. 19–23).Google Scholar
  2. Bashar, M. A., Ahmed, M. T., Syduzzaman, M., et al. (2014). Text-independent speaker identification system using average pitch and formant analysis. International Journal on Information Theory, 3(3), 23–30.CrossRefGoogle Scholar
  3. Bonzi, E., Grad, G., Maggi, A., et al. (2014). Study of the characteristic parameters of the normal voices of Argentinian speakers. Papers in Physics, 6, 060002.Google Scholar
  4. Boukous, A. Phonologie de l’amazighe, Institut Royal Dela Culture Amazighe: Rabat, (2009).Google Scholar
  5. Boukous, A. Société, langues et cultures au Maroc: Enjeuxsymboliques. Najah El Jadida: Casablanca.Google Scholar
  6. Brockmann, M., Storck, C., Carding, P. N., et al. (2008). Voice loudness and gender effects on jitter and shimmer in healthy adults. Journal of Speech, Language, and Hearing Research, 51(5), 1152–1160.CrossRefGoogle Scholar
  7. Busby, P. A., & Plant, G. L. (1995). Formant frequency values of vowels produced by preadolescent boys and girls. The Journal of the Acoustical Society of America, 97(4), 2603–2606.CrossRefGoogle Scholar
  8. Chai, L., Sprecher, A. J., Zhang, Y., et al. (2011). Perturbation and nonlinear dynamic analysis of adult male smokers. Journal of Voice, 25(3), 342–347.CrossRefGoogle Scholar
  9. Dutta, R. (2015). Spectral and spectrographic analysis with reference to some languages of north east India. International Journal of Emerging Research in Management & Technology, 4, 109–114.Google Scholar
  10. Fadel, C. B. X., Dassie-Leite, A. P., Santos, R. S., et al. (2015). Acoustic characteristics of the metallic voice quality. CoDAS (pp. 97–100). Sao Paulo: Sociedade Brasileira de Fonoaudiologia.Google Scholar
  11. Farrús, M., Hernando, J., & Ejarque, P. (2007). Jitter and shimmer measurements for speaker recognition. 8th Annual conference of the international speech communication association (pp. 778–781) Antwerp: ISCA.Google Scholar
  12. Gendrot, C., & Adda-Decker, M. (2005). Impact of duration on F1/F2 formant values of oral vowels: An automatic analysis of large broadcast news corpora in French and German. Variations, 2(22.5), 24.Google Scholar
  13. Georgeton, L., Paillereau, N., Landron, S., et al. (2012). Analyse formantique des voyelles orales du français en contexte isolé: À la recherche d’une référence pour les apprenants de FLE. Conférence conjointe Jep-Taln-Recital (pp. 145–152).Google Scholar
  14. Gerhard, D. (2003). Pitch extraction and fundamental frequency: History and current techniques. Technical Report. Regina: Department of Computer Science, University of Regina.Google Scholar
  15. Gilbert, H. R., & Weismer, G. G. (1974). The effects of smoking on the speaking fundamental frequency of adult women. Journal of Psycholinguistic Research, 3(3), 225–231.CrossRefGoogle Scholar
  16. Gonzalez, J., & Carpi, A. (2004). Early effects of smoking on the voice: A multidimensional study. Medical Science Monitor, 10(12), CR649–CR656.Google Scholar
  17. Guimarães, I., & Abberton, E. (2005). Health and voice quality in smokers: An exploratory investigation. Logopedics Phoniatrics Vocology, 30(3–4), 185–191.CrossRefGoogle Scholar
  18. Holmes, J. N., Holmes, W. J., & Garner, P. N. (1997). Using formant frequencies in speech recognition. Eurospeech, 97, 2083–2087.Google Scholar
  19. Hunt, M. J. (1987). Delayed decisions in speech recognition: The case of formants. Pattern Recognition Letters, 6(2), 121–137.MathSciNetCrossRefGoogle Scholar
  20. Kreimana, J., & Gerrattb, B. R. (2005). Perception of ape-riodicity in pathological voice. Journal of Acoustical Society of America, 117(4), 2201–2211.CrossRefGoogle Scholar
  21. Kumbhakarn, M., Sathe-Pathak, B. (2015). Analysis of emotional state of a person and its effect on speech features using PRAAT software. 2015 IEEE International conference on computing communication control and automation (ICCUBEA) (pp. 763–767).Google Scholar
  22. Low, L.-S., Maddage, N. C., Lech, M., et al. (2010).Influence of acoustic low-level descriptors in the detection of clinical depression in adolescents. 2010 IEEE International conference on acoustics speech and signal processing (ICASSP) (pp. 5154–5157).Google Scholar
  23. Mohanty, S., Swain, B. K. (2010). Language identification using support vector machine. Proceedings of OCOCOSDA-2010, Nepal.Google Scholar
  24. Moustaoui, M. (2003). The Amazigh language within Morocco’s language policy. Dossier 14, Madrid: University of Autnoma de Madrid.Google Scholar
  25. Muhammad, G., Mesallam, T. A., Malki, K. H., et al. (2011). Formant analysis in dysphonic patients and automatic Arabic digit speech recognition. Biomedical Engineering Online, 10(1), 1.CrossRefGoogle Scholar
  26. Oguz, H., Demirci, M., Safak, M. A., et al. (2007). Effects of unilateral vocal cord paralysis on objective voice measures obtained by Praat. European Archives of Oto-Rhino-Laryngology, 264(3), 257–261.CrossRefGoogle Scholar
  27. Outahajala, M., Zenkouar, L., Rosso, P. (2011).Building an annotated corpus for Amazighe, Proceedings of 4th international conference on Amazigh and ICT, Rabat.Google Scholar
  28. Phull, D. K., & Kumar, G. B. (2016). Vowel analysis for Indian English. Procedia Computer Science, 93, 533–538.CrossRefGoogle Scholar
  29. Satori, H., Zealouk, O., Satori, K., & Elhaoussi F. (2017). Voice comparison between smokers and non-smokers based on Amazigh digits using HMM speech recognition system. Journal of Speech Technologie, 20, 771–777.CrossRefGoogle Scholar
  30. Sorensen, D., & Horii, Y. (1982). Cigarette smoking and voice fundamental frequency. Journal of Communication Disorders, 15(2), 135–144.CrossRefGoogle Scholar
  31. Tanaka, Y., Igauea, H., Mizumachi, M., et al. (2015). Study of improvement of intelligibility for the elderly speech based on formant frequency shift. International Journal of Computer Consumer Control, 3(3), 57–64.Google Scholar
  32. Teixeira, J. P., & Gonçalves, A. (2016). Algorithm for jitter and shimmer measurement in pathologic voices. Procedia Computer Science, 100, 271–279.CrossRefGoogle Scholar
  33. Vincent, I., & Gilbert, H. R. (2012). The effects of cigarette smoking on the female voice. Logopedics Phoniatrics Vocology, 37(1), 22–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ouissam Zealouk
    • 1
    • 2
  • Hassan Satori
    • 1
    • 2
  • Mohamed Hamidi
    • 1
    • 2
  • Naouar Laaidi
    • 2
  • Khalid Satori
    • 1
  1. 1.Laboratory Computer Science, Image Processing and Numerical Analysis, Faculty of Sciences Dhar MahrazSidi Mohammed Ben Abbdallah UniversityFezMorocco
  2. 2.Artificial Intelligence Complex Systems and Modeling, Department of Mathematics and Computer Science, Faculty Polydisciplinary of NadorMohammed Premier UniversityOujdaMorocco

Personalised recommendations