International Journal of Speech Technology

, Volume 19, Issue 4, pp 791–804 | Cite as

Bird classification based on their sound patterns

  • M. A. Raghuram
  • Nikhil R. Chavan
  • Ravikiran Belur
  • Shashidhar G. Koolagudi


In this paper we focus on automatic bird classification based on their sound patterns. This is useful in the field of ornithology for studying bird species and their behavior based on their sound. The proposed methodology may be used to conduct survey of birds. The proposed methods may be used to automatically classify birds using different audio processing and machine learning techniques on the basis of their chirping patterns. An effort has been made in this work to map characteristics of birds such as size, habitat, species and types of call, on to their sounds. This study is also part of a broader project that includes development of software and hardware systems to monitor the bird species that appear in different geographical locations which helps ornithologists to monitor environmental conditions with respect to specific bird species.


Machine learning Audio processing Bird call Bird species Bird weight Bird habitat 


  1. Acevedo, A., Corrada-Bravo, C., Corrada-Bravo, H., Villanueva-Rivera, L., & Aide, T. (2009). Automated classification of bird and amphibian calls using machine learning: A comparison of methods. Ecological Informatics, 4, 206–214.CrossRefGoogle Scholar
  2. Bardeli, R., Wolff, D., Kurth, F., Koch, M., Tauchert, K., & Frommolt, K. (2010). Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recognition Letters, 31, 1524–1534.CrossRefGoogle Scholar
  3. Beckers, G. J. (2011). Bird speech perception and vocal production: A comparison with humans. Human Biology, 83(2), 191–212.CrossRefGoogle Scholar
  4. Bermúdez-Cuamatzin, E., Ríos-Chelén, A. A., Gil, D., & Garcia, C. M. (2010). Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biology Letters, 3, 368–370.Google Scholar
  5. Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: Converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11(11), 747–759.CrossRefGoogle Scholar
  6. Brandes, T. S. (2008). Automated sound recording and analysis techniques for bird surveys and conservation. Bird Conservation International, 18(S1), S163–S173.Google Scholar
  7. Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X. Z., Raich, R., Hadley, S., et al. (2012). Classification of multiple bird species. Journal of Acoustic Society of America, 131, 4640–4650.CrossRefGoogle Scholar
  8. Chen, Z., & Maher, R. C. (2006). Semi-automatic classification of bird vocalizations using spectral peak tracks. The Journal of the Acoustical Society of America, 120, 2974–2984.CrossRefGoogle Scholar
  9. Clark, G. A. (1979). Body weights of birds: A review. The Condor, 81(2), 193–202.CrossRefGoogle Scholar
  10. Davis, S. B., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences, In Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing (Vol. 28, pp. 357–366).Google Scholar
  11. Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22(1), 567–631.CrossRefGoogle Scholar
  12. Dowling, J., Luther, D., & Marra, P. (2012). Comparative effects of urban development and anthropogenic noise on bird songs. Behavioral Ecology, 23(1), 201–209.CrossRefGoogle Scholar
  13. Dunning, J. (2013). Updates to the second edition of the CRC handbook of avian body masses.
  14. Fagerlund, S. (2007). Bird species recognition using support vector machines. Journal on Advances in Signal Processing, 7, 64–71.MATHGoogle Scholar
  15. Hall, M. L., Kingma, S. A., & Peters, A. (2013). Male songbird indicates body size with low-pitched advertising songs. PLoS One, 8(2), e56717.CrossRefGoogle Scholar
  16. Juang, C., & Chen, T. (2007). Birdsong recognition using prediction-based recurrent neural fuzzy networks. Neurocomputing, 71, 121–130.CrossRefGoogle Scholar
  17. Kight, C. R., & Swaddle, J. P. (2011). How and why environmental noise impacts animals: An integrative, mechanistic review. Ecology Letters, 14(10), 1052–1061.CrossRefGoogle Scholar
  18. Kwan, C., Mei, G., Zhao, X., Ren, Z., Xu, R., Stanford, V., Rochet, C., Aube, J., & Ho, K. (2004). Bird classification algorithms: Theory and experimental results, In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’04) (vol. 5, pp. 289–292), Montreal, Canada.Google Scholar
  19. Laiolo, P. (2010). The emerging significance of bioacoustics in animal species conservation. Biological Conservation, 143(7), 1635–1645.CrossRefGoogle Scholar
  20. Lartillot, O., & Toiviainen, P. (2007). A matlab toolbox for musical feature extraction from audio, In International Conference on Digital Audio Effects (pp. 237–244).Google Scholar
  21. Lartillot, O., Eerola, T., Toiviainen, P., & Fornari, J. (2008). Multi-feature modeling of pulse clarity: Design, validation and optimization., In ISMIR (pp. 521–526), Citeseer.Google Scholar
  22. Lathi, B. P. (2004). Signal processing and linear systems. Oxford: Oxford University Press.Google Scholar
  23. Lee, C.-H., Han, C.-C., & Chuang, C.-C. (2008). Automatic classification of bird species from their sounds using two-dimensional cepstral coefficients. IEEE Transactions on Audio, Speech, and Language Processing, 16(8), 1541–1550.CrossRefGoogle Scholar
  24. Linhart, P., & Fuchs, R. (2015). Song pitch indicates body size and correlates with males’ response to playback in a songbird. Animal Behaviour, 103, 91–98.CrossRefGoogle Scholar
  25. Lopes, M. T., Gioppo, L. L., Higushi, T. T., Kaestner, C. A. A., Silla, Jr., C. N., & Koerich, A. L. (2011). Automatic bird species identification for large number of species, In IEEE International Symposium on Multimedia.Google Scholar
  26. Lopes, M. T., Koerich, A. L., Kaestner, C. A. A., Silla, Jr., C. N. (2011). Feature set comparison for automatic bird species identification, In IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, Alaska.Google Scholar
  27. Luther, D., & Baptista, L. (2010). Urban noise and the cultural evolution of bird songs. Proceedings of the Royal Society of London B: Biological Sciences, 277(1680), 469–473.CrossRefGoogle Scholar
  28. Mellinger, D., & Bradbury, J. W. (2007). Acoustic measurement of marine mammal sounds in noisy environments, In Proceedings of the International Conference on Underwater Acoustical Measurements: Technologies and Results.Google Scholar
  29. Mitchell, T. M. (1997). Machine learning. Maidenhead: McGraw-Hill.MATHGoogle Scholar
  30. Rickwood, P., & Taylor, A. (2008). Methods for automatically analyzing humpback song units. Journal of the Acoustical Society of America, 123, 1763–1772.CrossRefGoogle Scholar
  31. Silla, C. N., & Kaestner, C. A. (2013). Hierarchical classification of bird species using their audio recorded songs (pp. 1895–1900). Washington, DC: IEEE Computer Society.Google Scholar
  32. Slabbekoorn, H., & Peet, M. (2003). Ecology: Birds sing at a higher pitch in urban noise. Nature, 424(6946), 267–267.CrossRefGoogle Scholar
  33. Somervuo, P., Harma, A., & Fagerlund, S. (2006). Parametric representations of bird sounds for automatic species recognition. IEEE Transactions on Audio, Speech and Language Processing, 14, 2252–2263.CrossRefGoogle Scholar
  34. Sun, R., Marye, Y. W., & Zhao, H. (2013). Wavelet transform digital sound processing to identify wild bird species, In Proceedings of the 2013 International Conference on Wavelet Analysis and Pattern Recognition.Google Scholar
  35. Tsai, W.-H., Xu, Y.-Y., & Lin, W.-C. (2013). Bird species identification based on timbre and pitch features, In IEEE International Conference on Multimedia and Expo (pp. 1–6).Google Scholar
  36. Vilches, E., Escobar, I., Vallejo, E., & Taylor, C. (2006). Data mining applied to acoustic bird species recognition, In Proceedings of the 18th IEEE International Conference on Pattern Recognition (ICPR’06).Google Scholar
  37. Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. San Francisco: Morgan Kaufmann Publishers.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. A. Raghuram
    • 1
  • Nikhil R. Chavan
    • 1
  • Ravikiran Belur
    • 1
  • Shashidhar G. Koolagudi
    • 1
  1. 1.Department of Computer Science and EngineeringNational Institute of Technology KarnatakaMangaloreIndia

Personalised recommendations