Advertisement

International Journal of Speech Technology

, Volume 19, Issue 3, pp 585–591 | Cite as

Audio steganalysis using deep belief networks

  • Catherine Paulin
  • Sid-Ahmed Selouani
  • Éric Hervet
Article

Abstract

This paper presents a new steganalysis method that uses a deep belief network (DBN) as a classifier for audio files. It has been tested on three steganographic techniques: StegHide, Hide4PGP and FreqSteg. The results were compared to two other existing robust steganalysis methods based on support vector machines (SVMs) and Gaussian mixture models (GMMs). Afterwards, another classification task aiming at identifying the type of steganographic applied or not to the speech signal was carried out. The results of this four-way classification show that in most cases, the proposed DBN-based steganalysis method gives higher classification rates than the two other steganalysis methods based on SVMs and GMMs.

Keywords

Audio steganography Audio steganalysis DBN MFCCs SVMs GMMs 

References

  1. Altun, O., Sharma, G., Celik, M. U., Sterling, M., Titlebaum, E. L., & Bocko, M. (2005). Morphological steganalysis of audio signals and the principle of diminishing marginal distortions. In ICASSP, 2, 21–24.Google Scholar
  2. Artz, D. (2001). Digital steganography: hiding data within data. IEEE Internet Computing, 5(3), 75–80.CrossRefGoogle Scholar
  3. Garofolo, J. S., et al. (1993). TIMIT: acoustic-phonetic continuous speech corpus LDC93S1. Web download. Philadelphia: Linguistic Data Consortium.Google Scholar
  4. Ghasemzadeh, H., & Arjmandi, M. K. (2014). Reversed-mel cepstrum based audio steganalysis. In 2014 4th international eConference on computer and knowledge engineering (ICCKE), (pp. 679–684). IEEE.Google Scholar
  5. Hetzl, S. (2003). StegHide steganography. http://www.steghide.sourceforge.net/.
  6. Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.MathSciNetCrossRefMATHGoogle Scholar
  7. Hu, Y., & Loizou, P. C. (2007). Subjective comparison and evaluation of speech enhancement algorithms. Speech Communication, 49(7), 588–601.CrossRefGoogle Scholar
  8. Janicki, A., Mazurczyk, W., & Szczypiorski, K. (2014). Steganalysis of transcoding steganography. Annals of Telecommunications, 69(7–8), 449–460.CrossRefGoogle Scholar
  9. Johnson, M. K., Lyu, S., & Farid, H. (2005). Steganalysis of recorded speech. In Proceedings of the electronic imaging 2005, (pp. 664–672). International Society for Optics and Photonics.Google Scholar
  10. Kraetzer, C., & Dittmann, J. (2007). Mel-cepstrum-based steganalysis for voip steganography. In Proceedings of the electronic imaging 2007. (pp. 664–672) . International Society for Optics and Photonics.Google Scholar
  11. Liu, Q., Sung, A. H., & Qiao, M. (2009). Temporal derivative-based spectrum and mel-cepstrum audio steganalysis. IEEE Transactions on Information Forensics and Security, 4(3), 359–368.CrossRefGoogle Scholar
  12. Ozer, H., Avcibas, I., Sankur, B., & Memon, N. D. (2003). Steganalysis of audio based on audio quality metrics. In Proceedings of the electronic imaging 2003. (pp. 55–66). International Society for Optics and Photonics.Google Scholar
  13. Palm, R. B. (2012). Prediction as a candidate for learning deep hierarchical models of data. Master’s thesis, Technical University of Denmark.Google Scholar
  14. Rekik, S., Selouani, S.-A., Guerchi, D., & Hamam, H. (2012). An autoregressive time delay neural network for speech steganalysis. In 2012 11th international conference on information science, signal processing and their applications (ISSPA). (pp. 54–58). IEEE.Google Scholar
  15. Repp, H. (1996). Hide4PGP Steganography. http://www.heinz-repp.onlinehome.de/Hide4PGP.htm.
  16. Swanson, E., Ganier, C., Holman, R., & Rosser, J. (2002). Freqency domain steganography. https://www.clear.rice.edu/elec301/Projects01/smokey_steg/group.html.
  17. Yürüklü, E., Koçal, O. H., & Dilaveroğlu, E. (2014). A new approach for speech audio steganalysis using delay vector variance method. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 19(1), 27–36.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Catherine Paulin
    • 1
  • Sid-Ahmed Selouani
    • 1
  • Éric Hervet
    • 2
  1. 1.Campus de ShippaganUniversité de MonctonMonctonCanada
  2. 2.Campus de MonctonUniversité de MonctonMonctonCanada

Personalised recommendations