International Journal of Speech Technology

, Volume 19, Issue 2, pp 339–346 | Cite as

A new Quranic Corpus rich in morphosyntactical information



There is not a widely amount of available annotated Arabic corpora. This leads us to contribute to the enrichment of Arabic corpora resources. In this regard, we have decided to start working with correct and carefully selected texts. Thus, beginning with the Quranic Arabic text is the best way to start for such an effort. Furthermore, the annotating linguistic resources, such as Quranic Corpus, are important for researchers working in all Arabic natural language processing fields. To the best of our knowledge, the only available Quranic Arabic corpora are from the University of Leeds, University of Jordan and the University of Haifa. Unfortunately, these corpora have several problems and they do not contain enough grammatical and syntactical information. To build a new Corpus of the Quran, the work used a semi-automatic technique, which consists in using the morphsyntactic of standard Arabic words “AlKhalil Morpho Sys” followed by a manual treatment. As a result of this work, we have built a new Quranic Corpus rich in morphosyntactical information.


Corpus linguistics Quran Arabic language processing Morphosyntactical information AlKhalil Morpho Sys 



We would like to thank the Arabic Language Processing team in Oujda, especially Pr. Mazroui Azzeddine for his useful and relevant remarks. Also, we would like to thank Pr. Boudlal Abderrahim and Belahbib Rachid for their helpful information about the Arabic morphological and syntactical rules.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

The authors declare that this study does not involve human participation.

Research involving human participants and/or animals

The authors declare that this research not involves human subjects and/or animals research.


  1. Albared, M., Omar, N., & Ab Aziz, M. J. (2011). Developing a competitive HMM Arabic POS tagger using small training corpora. In intelligent information and database systems (pp. 288–296). Springer Berlin Heidelberg.Google Scholar
  2. Atwell, E., Brierley, C., Dukes, K., Sawalha, M., & Sharaf, A. B. (2011). An artificial intelligence approach to Arabic and Islamic content on the internet. In Proceedings of NITS 3rd National Information Technology Symposium.Google Scholar
  3. Boudchiche, M., Mazroui, A., Lakhouaja, A., & Ould Bebah, M. (2014, February 8). L’Analyseur Morphosyntaxique AlKhalil Morpho Sys 2. 1ère Journée Doctorale Nationale sur L’Ingénierie de la Langue Arabe (JDILA’14).Google Scholar
  4. Boudlal, A., Lakhouaja, A., Mazroui, A., Meziane, A., Bebah, M., & Shoul, M. (2010). Alkhalil Morpho SYS1: A Morphosyntactic Analysis System for Arabic Texts. In International Arab Conference on Information Technology.Google Scholar
  5. Brierley, C., Sawalha, M., & Atwell, E. (2012). Open-source boundary-annotated Corpus for Arabic speech and language processing. In LREC (pp. 1011–1016).Google Scholar
  6. Buckwalter, T. (2004, August). Issues in Arabic orthography and morphology analysis. In proceedings of the workshop on computational approaches to Arabic script-based languages (pp. 31–34). Association for computational linguistics.Google Scholar
  7. Dror, J., Shaharabani, D., Talmon, R., & Wintner, S. (2004). Morphological analysis of the Qur’an. Literary and Linguistic Computing, 19(4), 431–452.CrossRefGoogle Scholar
  8. Dukes, K., Atwell, E., & Habash, N. (2013). Supervised collaboration for syntactic annotation of Quranic Arabic. Language Resources and Evaluation, 47(1), 33–62.CrossRefGoogle Scholar
  9. Dukes, K., & Buckwalter, T. (2010, March). A dependency treebank of the Quran using traditional Arabic grammar. In Informatics and systems (INFOS), 2010 The 7th International conference on (pp. 1–7). IEEE.Google Scholar
  10. Dukes, K., & Habash, N. (2010, May). Morphological annotation of Quranic Arabic. In LRECGoogle Scholar
  11. Elmahdy, M., Gruhn, R., Minker, W., & Abdennadher, S. (2009). Survey on common Arabic language forms from a speech recognition point of view. In International conference on Acoustics (NAG-DAGA), Rotterdam, Netherlands (pp. 63–66).Google Scholar
  12. Fabri, R., Gasser, M., Habash, N., Kiraz, G., & Wintner, S. (2014). Linguistic introduction: The orthography, morphology and syntax of semitic languages. In natural language processing of semitic languages (pp. 3–41). Springer Berlin Heidelberg.Google Scholar
  13. Habash, N., Diab, M. T., & Rambow, O. (2012). Conventional orthography for dialectal arabic. In LREC (pp. 711–718).Google Scholar
  14. Habash, N., & Roth, R. M. (2009, August). Catib: The columbia arabic treebank. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers (pp. 221–224). Association for computational linguistics.Google Scholar
  15. KSU–Electronic Mosshaf project “Ayat”.
  16. Larkey, L. S., Ballesteros, L., & Connell, M. E. (2007). Light stemming for Arabic information retrieval. In Arabic computational morphology (pp. 221–243). Springer Netherlands.Google Scholar
  17. Maamouri, M., Bies, A., Buckwalter, T., & Mekki, W. (2004, September). The penn arabic treebank: Building a large-scale annotated arabic Corpus. In NEMLAR conference on Arabic language resources and tools (pp. 102–109).Google Scholar
  18. Marton, Y., Habash, N., & Rambow, O. (2011, June). Improving Arabic dependency parsing with form-based and functional morphological features. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies-Volume 1 (pp. 1586–1596). Association for computational linguistics.Google Scholar
  19. Sawalha, M., & Atwell, E. (2013). A standard tag set expounding traditional morphological features for Arabic language part-of-speech tagging. Word Structure, 6(1), 43–99.CrossRefGoogle Scholar
  20. Sawalha, M., Brierley, C., & Atwell, E. (2012). Predicting phrase breaks in classical and modern standard Arabic text. In LREC (pp. 3868–3872).Google Scholar
  21. Sawalha, M., Brierley, C., & Atwell, E. (2014). Automatically generated, phonemic Arabic-IPA pronunciation tiers for the boundary annotated Qur’an dataset for machine learning (version 2.0). LRE-REL2, 42.Google Scholar
  22. Sharaf, A. B. M., & Atwell, E. (2012). QurAna: Corpus of the Quran annotated with pronominal anaphora. In LREC (pp. 130–137).Google Scholar
  23. Smrž, O., & Hajic, J. (2006). The other Arabic treebank: Prague dependencies and functions (p. 104). Arabic Computational Linguistics: Current Implementations. CSLI Publications.Google Scholar
  24. Watson, J. C. (2007). The phonology and morphology of Arabic. Oxford university press.Google Scholar
  25. Zarrabi-Zadeh, H. (2007–2014). Tanzil Quran project.
  26. Zeroual, I., & Lakhouaja, A. (2014, November). A New Quranic Corpus rich in morphological information. In Procedings of the 5th International Conference on Arabic language processing CITALA2014, Oujda, Morocco.Google Scholar
  27. Zitouni, I. (Ed.). (2014). Natural language processing of semitic languages (pp. 299–334). Springer.Google Scholar
  28. Zitouni, I., & Benajiba, Y. (2014). Aligned-parallel-corpora based semi-supervised learning for Arabic mention detection. IEEE/ACM transactions on audio, speech and language processing (TASLP), 22(2), 314–324.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Computer Sciences Laboratory Faculty of SciencesMohammed First UniversityOujdaMorocco

Personalised recommendations