International Journal of Speech Technology

, Volume 18, Issue 3, pp 433–441 | Cite as

An architectural comparison of signal reconstruction algorithms from short-time Fourier transform magnitude spectra

  • Mouhcine Chami
  • Maryem Immassi
  • Joseph Di Martino


This paper presents a comparison of different spectral re-synthesis algorithms. This study describes more particularly the Di Martino and Pierron (D&P) and real-time iterative spectrogram inversion with look-ahead algorithms from an architectural point of view because they are dedicated to real-time process. We use Python (as simulation language) because it allows easily the comparison of performances of the all the algorithms studied according to some important algorithm parameters as the number of iterations or the number of look-ahead frames. This comparison confirms the advantage of using D&P for real-time process from an architectural point of view.


Short-time Fourier transform Magnitude-only reconstruction Python VHDL Real-time systems 


  1. Beauregard, G. T., Zhu, X., & Wyse, L. (2005). An efficient algorithm for real-time spectrogram inversion. In Proceedings of the 8th International Conference on Digital Audio Effects (DAFX-05) (pp. 116–221).Google Scholar
  2. Brown, M. C. (2001). Python. New York: McGraw-Hill.Google Scholar
  3. Chami, M., Di Martino, J., Pierron, L., & Ibn Elhaj, E. (2012) Real-time signal reconstruction from short-time Fourier transform magnitude spectra using FPGAs. In Proceedings of the 5th International Conference on Information Systems and Economic Intelligence.Google Scholar
  4. Di Martino, J., & Pierron, L. (2010) Synthétiseur numérique audio amélioré. Patent “Oesovox”, 10/02674 INPI, Paris.Google Scholar
  5. Fluckiger, F. (1995). Understanding networked multimedia: Applications and technology, Paperback.Google Scholar
  6. Griffin, D. W., & Lim, J. S. (1984). Signal estimation from short-time Fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP, 32(2), 236–243.CrossRefGoogle Scholar
  7. Griffin, D. W. & Lim, J. S. (1984). Speech synthesis from short-time Fourier transform magnitude and its application to speech processing. In Proceedings of the IEEE International Conference Acoustics, Speech, Signal Processing, vol. 9 (pp. 61–64).Google Scholar
  8. Lawrence, R. (1975). Rabiner and Bernard Gold: Theory and application of digital signal processing. Englewood Cliffs: Prentice-Hall Inc.Google Scholar
  9. Lutz, M., & Ascher, D. (1998). Learning python. O’Reilly & Associates.Google Scholar
  10. Nawab, S. H., Quartieri, T. F., & Lim, J. S. (1983). Signal reconsctruction from short-time Fourier transform magnitude. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP, 31(4), 986–998.CrossRefGoogle Scholar
  11. Zhu, X., Beauregard, G. T., & Wyse, L. (2007). Real-time signal estimation from modified short-time Fourier transform magnitude spectra. IEEE Transactions on Audio, Speech and Language Processing, 15(5), 1645–1653.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mouhcine Chami
    • 1
  • Maryem Immassi
    • 1
  • Joseph Di Martino
    • 2
  1. 1.LSTRS INPTRabatMorocco
  2. 2.LORIAVandœuvre-lès-NancyFrance

Personalised recommendations