Advertisement

International Journal of Speech Technology

, Volume 17, Issue 4, pp 409–416 | Cite as

Efficient speaker identification from speech transmitted over Bluetooth networks

  • Ali A. Khalil
  • Mustafa M. Abd Elnaby
  • Elsayed M. Saad
  • Azzam Y. Al-nahari
  • Nayel Al-Zubi
  • Mohsen A. M. El-Bendary
  • Fathi E. Abd El-Samie
Article

Abstract

This paper studies the process of speaker identification over Bluetooth networks. Bluetooth channel degradations are considered prior to the speaker identification process. The work in this paper employs Mel-frequency cepstral coefficients for feature extraction. Features are extracted from different transforms of the received speech signals such as the discrete cosine transform (DCT), signal plus DCT, discrete sine transform (DST), signal plus DST, discrete wavelet transform (DWT), and signal plus DWT. A neural network classifier is used in the experiments, while the training phase uses clean speech signals and the testing phase uses degraded signals due to communication over the Bluetooth channel. A comparison is carried out between the different methods of feature extraction showing that the DCT achieves the highest recognition rates.

Keywords

Speaker identification Bluetooth MFCCs DCT DST DWT 

References

  1. Al Bawab, Z., et al. (2003). Speech recognition over bluetooth wireless channels. EUROSPEECH 2003, Geneva.Google Scholar
  2. Chadha, A. (2011). Text-independent speaker recognition for low SNR environments with encryption. International Journal of Computer Applications, 31(10) (0975–8887), October 2011.Google Scholar
  3. Chavan, M. S., & Chougule, S. V. (2012). Speaker features and recognition techniques: A review. International Journal of Computational Engineering Research. ISSN: 2250–3005, IJCER, May–June 2012, Vol. 2, Issue No. 3, 720–728.Google Scholar
  4. El-Bendary, M. A. M. M. El-azm, A. E. A., El-Fishawy, N. A., Shawki, F., Abd-ElSamie, F. E., El-Tokhy, M. A. R., et al. (2012). Performance of the audio signals transmission over wireless networks with the channel interleaving considerations. EURASIP Journal on Audio, Speech, and Music Processing, 4.Google Scholar
  5. Galushkin, A. I. (2007). Neural network theory. Berlin, Heidelberg: Springer.Google Scholar
  6. Han, W. (2006). Speech recognition IC with an efficient MFCC features. The Chinese University of Hong Kong, Sept. 2006.Google Scholar
  7. Haykin, S. (1999). Neural networks, 2nd ed. McMaster University, Hamilton, ON, Canada.Google Scholar
  8. Kinnunen, T. (2003). Spectral Features for automatic text-independent speaker recognition. University of Joensuu, Department of Computer Science, Joenssuu, Finland.Google Scholar
  9. Pullella, D., & Togneri, R. (2006). Speaker identification using higher order spectra. University of Western Australia.Google Scholar
  10. Russo, M. (2005). Speech recognition over Bluetooth ACL and SCO links: A comparison. IEEE.Google Scholar
  11. Shuling, L., & Wang, C. (2009) Nonspecific speech recognition method based on composite LVQ1 and LVQ2 network. Chinese Control and Decision Conference (CCDC), 2304–2388.Google Scholar
  12. Trivedi, N., Kumar, V., Singh, S., Ahuja, S., & Chadha, R. (2011). Speech recognition by wavelet analysis. International Journal of Computer Applications, 15(8) (0975–8887) February 2011.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ali A. Khalil
    • 1
  • Mustafa M. Abd Elnaby
    • 1
  • Elsayed M. Saad
    • 2
  • Azzam Y. Al-nahari
    • 3
  • Nayel Al-Zubi
    • 4
  • Mohsen A. M. El-Bendary
    • 5
  • Fathi E. Abd El-Samie
    • 6
  1. 1.Department of Electronics and Communications EngineeringTanta UniversityTantaEgypt
  2. 2.Department of Communications and ElectronicsHelwan UniversityHelwanEgypt
  3. 3.Department of Electronics Engineering, Faculty of Engineering and ArchitectureIbb UniversityIbbYemen
  4. 4.Department of Computer Engineering, Faculty of EngineeringAl-Balqa’ Applied UniversityAl-Salt Jodan
  5. 5.Faculty of Industrial EducationHelwan UniversityHelwanEgypt
  6. 6.Department of Electronics and Electrical Communications, Faculty of Electronic EngineeringMenoufia UniversityMenouf Egypt

Personalised recommendations