Skip to main content
Log in

An investigation of speech enhancement using wavelet filtering method

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

This paper investigates the utilization of wavelet filters via multistage convolution by Reverse Biorthogonal Wavelets (RBW) in high and low pass band frequency parts of speech signal. Speech signal is decomposed into two pass bands of frequency; high and low, and then the noise is removed in each band individually in different stages via wavelet filters. This approach provides better outcomes because it does not cut the speech information, which occurs when utilizing conventional thresholding. We tested the proposed method via several noise probability distribution functions. Subjective evaluation is engaged in conjunction with objective evaluation to accomplish optimal investigation method. The method is simple but has surprise high quality results. The method shows superiority over Donoho and Johnstone thresholding method and Birge-Massart thresholding strategy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahoura, M., & Rouat, J. (2006). Wavelet speech enhancement based on time–scale adaptation. Speech Communication, 48, 1620–1637.

    Article  Google Scholar 

  • Berouti, M., Schwartz, R., & Makhoul, J. (1979). Enhancement of speech corrupted by acoustic noise. In Proceeding of the IEEE conference on acoustics, speech and signal processing (pp. 208–211).

  • Birgé, L., & Massart, P. (1997). From model selection to adaptive estimation. In Festschrift for Lucien Le Cam (pp. 55–88). New York: Springer.

    Google Scholar 

  • Boll, S. (1979). Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics Speech and Signal Processing, 27, 113–120.

    Article  Google Scholar 

  • Breithaupt, C., & Martin, R. (2003). MMSE estimation of magnitude-squared DFT coefficients with super-Gaussian priors. In IEEE proceeding of international conference on acoustics, speech and signal processing (Vol. I, pp. 896–899).

  • Cohen, A., Daubechies, I., & Feauveau, J. (1992). Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 45(5), 485–560.

    Article  MATH  MathSciNet  Google Scholar 

  • Daqrouq, K., & Abu-Isbeih, I.N. (2007). Arrhythmia detection using wavelet transform. In IEEE Region 8, EUROCON 2007, Warsaw, Poland.

  • Daqrouq, K., & Abu-Sheikha, N. (2005). Heart rate variability analysis using wavelet transform. Asian Journal for Information Technology, 4(4).

  • Dat, T., Takeda, K., & Itakura, F. (2005). Generalized gamma modeling of speech and its online estimation for speech enhancement. In Proceeding of ICASSP-2005 (pp. 181–184).

  • Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41(11), 909–996.

    Article  MATH  MathSciNet  Google Scholar 

  • Daubechies, I. (1992). Ten lectures on wavelets. In CBMS-NSF conference series in applied mathematics. Philadelphia: SIAM.

    Google Scholar 

  • Deller, J., Hansen, J., & Proakis, J. (2000). Discrete-time processing of speech signals (2nd ed.). New York: IEEE Press.

    Google Scholar 

  • Diethorn, E. (2000). Subband noise reduction methods for speech enhancement. In S. L. Gay, & J. Benesty (Eds.), Acoustic signal processing for telecommunication. Dordrecht: Kluwer Academic. Chapter 9.

    Google Scholar 

  • Donoho, D. (1993). Nonlinear wavelet methods for recovering signals, images, and densities from indirect and noisy data. Proceedings of Symposia in Applied Mathematics, 47, 173–205.

    MathSciNet  Google Scholar 

  • Donoho, D. (1995). Denoising by soft thresholding. IEEE Transactions on Information Theory, 41(3), 613–627.

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D., & Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425–455.

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D., & Johnstone, I. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90, 1200–1224.

    Article  MATH  MathSciNet  Google Scholar 

  • Ephraim, Y., & Malah, D. (1984). Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-32(6), 1109–1121.

    Article  Google Scholar 

  • Ephraim, Y., & Malah, D. (1985). Speech enhancement using a minimum mean square error log-spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-33, 443–445.

    Article  Google Scholar 

  • Gabor, D. (1946). Theory of communications. Journal of the Institute of Electrical Engineering London, 93, 429–457.

    Google Scholar 

  • Ghanbari, Y., & Karami, M. (2004). Spectral subtraction in the wavelet domain for speech enhancement. Internat. J. Software Inf. Technol. (IJSIT), 1, 26–30.

    Google Scholar 

  • Ghanbari, Y., & Kerami-Mollaei, M.R. (2006). A new approach for speech enhancement based on the adaptive thresholding of the wavelet packets. Speech Communication, 48, 927–940.

    Article  Google Scholar 

  • Hansen, J., & Pellom, B. (1998). An effective quality evaluation protocol for speech enhancement algorithms. In Proc. int. conf. spoken lang. process. (Vol. 7, pp. 2819–2822).

  • Haykin, S. (1996). Adaptive filter theory (3rd ed.). New York: Prentice Hall.

    Google Scholar 

  • Hu, Y., & Loizou, P. (2008). Evaluation of objective quality measures for speech enhancement. IEEE Transactions on Audio, Speech, and Language Processing, 16(1), 229–238.

    Article  Google Scholar 

  • Huang, H., & Pan, J. (2006). Uniform and warped low delay filter-banks for speech enhancement. Signal Processing, 86, 792–803.

    Article  MATH  Google Scholar 

  • Huang, Q., Yang, J., & Shoushui, W. (2007). Variational Bayesian learning for speech modeling and enhancement. Signal Processing, 87, 2026–2035.

    Article  MATH  Google Scholar 

  • ITU-T Rec. P. 835 (2003). Subjective test methodology for evaluating speech communication systems that include noise suppression algorithm, ITU-T, ITU-T Rec. P. 835.

  • Johnson, M., Yuan, X., & Ren, Y. (2007). Speech signal enhancement through adaptive wavelet thresholding. Speech Communication, 49, 123–133.

    Article  Google Scholar 

  • Johnstone, I., & Silverman, B. (1997). Wavelet threshold estimators for data with correlated noise. Journal of the Royal Statistical Society, Series B (Gen.), 59, 319–351.

    Article  MATH  MathSciNet  Google Scholar 

  • Kamath, S., & Loizou, P. (2002). A Multi-band spectral subtraction method for enhancing speech corrupted by colored noise. In IEEE international conference on acoustics, speech, and signal processing (Vol. 4, pp. 4160–4164).

  • Kamrul, H. (2004). Reducing signal-bias from MAD estimated noise level for DCT speech enhancement. Signal Processing, 84, 151–162.

    Article  MATH  Google Scholar 

  • Kitawaki, N., Nagabuchi, H., & Itoh, K. (1988). Objective quality evaluation for low bit-rate speech coding systems. IEEE Journal on Selected Areas in Communications, 6(2), 262–273.

    Article  Google Scholar 

  • Klatt, D. (1982). Prediction of perceived phonetic distance from critical band spectra. In IEEE international conference on acoustics, speech, and signal processing (Vol. 7, pp. 1278–1281).

  • Klein, M., & Kabal, P. (2002). Signal subspace speech enhancement with perceptual post-filtering. In IEEE international conference on acoustics, speech, and signal processing (Vol. 1, pp. 537–540).

  • Lotter, T., & Vary, P. (2005). Speech enhancement by MAP spectral amplitude estimation using a super-Gaussian speech model. EURASIP Journal on Applied Signal Processing, 7, 1110–1126.

    Google Scholar 

  • Mallat, S. (1989a). A theory for multiresolution signal decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.

    Article  MATH  Google Scholar 

  • Mallat, S. (1989b). Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(12), 2091–2110.

    Article  Google Scholar 

  • Mallat, S., & Hwang, W. (1992). Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 38, 617–643.

    Article  MathSciNet  Google Scholar 

  • Martin, R. (2002). Speech enhancement using MMSE short time spectral estimation with gamma distributed speech priors. In IEEE int. conf. acoustics, speech, signal processing, Orlando, Florida.

  • Sameti, H. (1998). Hmm-based strategies for enhancement of speech signals embedded in nonstationary noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 6, 445–455.

    Google Scholar 

  • Senapati, S., & Chakroborty, S. (2008). Speech enhancement by joint statistical characterization in the Log Gabor Wavelet domain Goutam Saha. Speech Communication, 50, 504–518.

    Article  Google Scholar 

  • Seok, J., & Bae, K. (1997). Speech enhancement with reduction of noise components in the wavelet domain. In IEEE international conference on acoustics, speech, and signal processing (ICASSP’97) (Vol. 2, pp. 1323–1326).

  • Sheikhzadeh, H., & Abutalebi, H. (2001). An improved waveletbased speech enhancement system. In Proceeding of the 7th Eur. conference speech comm. technol. (EuroSpeech), Aalborg, Denmark.

  • Tufekci, Z., Gowdy, J., Gurbuz, S., & Patterson, E. (2006). Applied mel-frequency discrete wavelet coefficients and parallel model compensation for noise-robust speech recognition. Speech Communication, 48, 1294–1307.

    Article  Google Scholar 

  • Turbin, V., & Faucheur, N. (2007). Estimation of speech quality of noise reduced signals. In Proceeding online workshop meas. speech audio quality network.

  • Veprek, P., & Scordilis, M. (2002). Analysis, enhancement and evaluation of five pitch determination techniques. Speech Communication, 37, 249–270.

    Article  MATH  Google Scholar 

  • Vidakovic, B., & Lozoya, C. (1998). On time-dependant wavelet denoising. IEEE Transaction on Signal Processing, 46, 2549–2548.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Daqrouq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daqrouq, K., Abu-Isbeih, I.N., Daoud, O. et al. An investigation of speech enhancement using wavelet filtering method. Int J Speech Technol 13, 101–115 (2010). https://doi.org/10.1007/s10772-010-9073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-010-9073-1

Keywords

Navigation