Relation of the Electrical Conductivity and the Thermal Conductivity to the Young’s Modulus of Buckypapers

Abstract

Buckypapers (BPs) are porous films of randomly oriented carbon nanotubes (CNTs), and have potential applications in many fields. To get better performance, the properties of BPs are needed to be tuned to meet the demands of various applications. In this paper, the effects of annealing on tuning the Young’s modulus, the electrical conductivity, and the thermal conductivity of BPs were studied. Our results indicated that the Raman G/D ratio of BPs increased from 0.8 to 3.9 after annealed at 2800 ℃, which indicates that the quality of CNTs has been improved after annealing. The Young’s modulus of the annealed BPs increased linearly with the annealing temperature due to the improvement in the CNT quality, and an increase of 82 % was attained after annealed at 2800 ℃. Furthermore, the electrical conductivity and the thermal conductivity of BPs increased nonlinearly with the annealing temperature, and the increases after 2800 ℃ heat treatment are 29 % and 125 %, respectively. We attributed the increase in both electrical and thermal conductivities to the enhancement of inter-tube contact after the annealing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    M. Endo, H. Muramatsu, T. Hayashi, Y. Kim, M. Terrones, M.J.N. Dresselhaus, Nature 433, 476–476 (2005)

    ADS  Article  Google Scholar 

  2. 2.

    H.Y. Chen, M.H. Chen, J.T. Di, G. Xu, H.B. Li, Q.W. Li, J. Phys. Chem. C 116, 3903–3909 (2012)

    Article  Google Scholar 

  3. 3.

    M.C.G. Santos, D.R. da Silva, P.S. Pinto, A.S. Ferlauto, R.G. Lacerda, W.P. Jesus, T.H.R. da Cunha, P.F.R. Ortega, R.L. Lavall, Electrochim. Acta 349, 136241 (2020)

    Article  Google Scholar 

  4. 4.

    G. Dong Wang, N. Li, S. Kirwa Melly, T. Peng, Y. Chi Li, Q. Di Zhao, S. De Ji, Compos. Struct. 208, 114–126 (2019)

    Article  Google Scholar 

  5. 5.

    A. Mostofizadeh, Y.W. Li, B. Song, Y.D. Huang, J. Nanomater. 2011, 1–21 (2011)

    Article  Google Scholar 

  6. 6.

    Y. Inoue, Y. Suzuki, Y. Minami, J. Muramatsu, Y. Shimamura, K. Suzuki, A. Ghemes, M. Okada, S. Sakakibara, H. Mimura, K. Naito, Carbon 49, 2437–2443 (2011)

    Article  Google Scholar 

  7. 7.

    C.Y. Li, T.W. Chou, Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  Google Scholar 

  8. 8.

    J. Kleis, E. Schroder, J. Chem. Phys. 122, 164902 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    L. Garnier, B. Gauthier-Manuel, E.W. van der Vegte, J. Snijders, G. Hadziioannou, J. Chem. Phys. 113, 2497–2503 (2000)

    ADS  Article  Google Scholar 

  10. 10.

    M.J. Green, N. Behabtu, M. Pasquali, W.W. Adams, Polymer 50, 4979–4997 (2009)

    Article  Google Scholar 

  11. 11.

    J.B. Miller, E.K. Hobbie, J. Polym. Sci. B 51, 1195–1208 (2013)

    Article  Google Scholar 

  12. 12.

    M.S.P. Shaffer, A.H. Windle, Macromolecules 32, 6864–6866 (1999)

    ADS  Article  Google Scholar 

  13. 13.

    A.B. Kaiser, Rep. Prog. Phys. 64, 1–49 (2001)

    ADS  Article  Google Scholar 

  14. 14.

    J. Zhou, Q. Xi, J. He, X. Xu, T. Nakayama, Y. Wang, J. Liu, Phys. Rev. Mater. 4, 015601 (2020)

    Article  Google Scholar 

  15. 15.

    Y. Chalopin, S. Volz, N. Mingo, J. Appl. Phys. 105, 084301 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    L. Jong, Polym. Test 79, 106009 (2019)

    Article  Google Scholar 

  17. 17.

    B. Tonpheng, J. Yu, O. Andersson, Phys. Chem. Chem. Phys. 13, 15047–15054 (2011)

    Article  Google Scholar 

  18. 18.

    K. Yang, J. He, P. Puneet, Z. Su, M.J. Skove, J. Gaillard, T.M. Tritt, A.M. Rao, J. Phys. Condens. Matter 22, 334215 (2010)

    Article  Google Scholar 

  19. 19.

    J. Di, S. Fang, F.A. Moura, D.S. Galvao, J. Bykova, A. Aliev, M.J. de Andrade, X. Lepro, N. Li, C. Haines, R. Ovalle-Robles, D. Qian, R.H. Baughman, Adv. Mater. 28, 6598–6605 (2016)

    Article  Google Scholar 

  20. 20.

    C.L. Choy, Y.W. Wong, G.W. Yang, T. Kanamoto, J. Polym. Sci. B 37, 3359–3367 (1999)

    Article  Google Scholar 

  21. 21.

    J. Zhang, D. Jiang, H.-X. Peng, F. Qin, Carbon 63, 125–132 (2013)

    Article  Google Scholar 

  22. 22.

    J.E. Fischer, W. Zhou, J. Vavro, M.C. Llaguno, C. Guthy, R. Haggenmueller, M.J. Casavant, D.E. Walters, R.E. Smalley, J. Appl. Phys. 93, 2157–2163 (2003)

    ADS  Article  Google Scholar 

  23. 23.

    Y. Xing, X. Zhang, H. Chen, M. Chen, Q. Li, Carbon 61, 501–506 (2013)

    Article  Google Scholar 

  24. 24.

    T. Huu Nam, K. Goto, Y. Shimamura, Y. Inoue, G. Yamamoto, K. Shirasu, T. Hashida, Compos. Interfaces 27, 569–586 (2019)

    Article  Google Scholar 

  25. 25.

    J. Yang, L. Kong, B. Mu, H. Zhang, Y. Li, W. Cao, Rev. Sci. Instrum. 90, 114902 (2019)

    ADS  Article  Google Scholar 

  26. 26.

    X. Huang, J. Wang, G. Eres, X. Wang, Carbon 49, 1680–1691 (2011)

    Article  Google Scholar 

  27. 27.

    T. Tagawa, T. Miyata, Mater. Sci. Eng. A 238, 336–342 (1997)

    Article  Google Scholar 

  28. 28.

    J.F. Niven, M.B. Johnson, S.M. Juckes, M.A. White, N.T. Alvarez, V. Shanov, Carbon 99, 485–490 (2016)

    Article  Google Scholar 

  29. 29.

    Z. Yang, X. Sun, X. Chen, Z. Yong, G. Xu, R. He, Z. An, Q. Li, H. Peng, J. Mater. Chem. 21, 13772–13775 (2011)

    Article  Google Scholar 

  30. 30.

    M. Scholz, Y. Hayashi, V. Eckert, V. Khavrus, A. Leonhardt, B. Buchner, M. Mertig, S. Hampel, Molecules 25, 1144 (2020)

    Article  Google Scholar 

  31. 31.

    F.J. Xu, B.C. Wei, W. Liu, H.F. Zhu, Y.Y. Zhang, Y.P. Qiu, J. Mater. Sci. 50, 8166–8174 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    F.M. Blighe, P.E. Lyons, S. De, W.J. Blau, J.N. Coleman, Carbon 46, 41–47 (2008)

    Article  Google Scholar 

  33. 33.

    J.W. Zhang, D.Z. Jiang, H.X. Peng, Microporous Mesoporous Mater. 184, 127–133 (2014)

    Article  Google Scholar 

  34. 34.

    M.H.O. Rashid, S.Q.T. Pham, L.J. Sweetman, L.J. Alcock, A. Wise, L.D. Nghiem, G. Triani, M.I.H. Panhuis, S.F. Ralph, J. Membr. Sci. 456, 175–184 (2014)

    Article  Google Scholar 

  35. 35.

    D. Hecht, L. Hu, G. Grüner, Appl. Phys. Lett. 89, 133112 (2006)

    ADS  Article  Google Scholar 

  36. 36.

    J.K. Yang, S. Waltermire, Y.F. Chen, A.A. Zinn, T.T. Xu, D.Y. Li, Appl. Phys. Lett. 96, 023109 (2010)

    ADS  Article  Google Scholar 

  37. 37.

    Y.A. Yue, X.P. Huang, X.W. Wang, Phys. Lett. A 374, 4144–4151 (2010)

    ADS  Article  Google Scholar 

  38. 38.

    R.S. Prasher, X.J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, P. Keblinski, Phys. Rev. Lett. 102, 105901 (2009)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Program of China (Grant No. 2017YFB0406000) and the National Natural Science Foundation of China (Grant No. 51676036).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gutian Zhao or Juekuan Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mu, B., Li, X., Feng, X. et al. Relation of the Electrical Conductivity and the Thermal Conductivity to the Young’s Modulus of Buckypapers. Int J Thermophys 42, 50 (2021). https://doi.org/10.1007/s10765-021-02806-z

Download citation

Keywords

  • Buckypapers
  • Electrical conductivity
  • Thermal conductivity
  • Young’s modulus