Experimental Study on Thermophysical Properties of Propylene Glycol-Based Graphene Nanofluids


This study determined the optimal dispersion conditions of nanofluids by orthogonal experiments. Stable graphene/propylene glycol nanofluids are successfully prepared by a "two-step method" using a 60 wt % propylene glycol deionized water solution as the base fluid, and its thermal conductivity and viscosity are evaluated. Additionally, the effects of the graphene mass concentration and nanofluid temperature on thermal conductivity and viscosity are expounded, and a model for the prediction of thermophysical properties is established. The combined effect of thermal conductivity and viscosity on the heat transfer enhancement of nanofluids is analyzed theoretically, and the optimum mass concentration of graphene is determined. The results show that the thermal conductivity of nanofluids increases with the increase of the graphene concentration and nanofluid temperature. Also, the viscosity of nanofluid increases with the increase of the graphene concentration and decreases significantly with the increase of the nanofluid temperature. When the mass concentration of graphene is higher than 0.2 wt %, the increase in thermal conductivity caused by the increase of the graphene mass concentration decreases significantly, while the increase of viscosity increases significantly, and the effect of the heat transfer enhancement is almost not improved.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


C k :

Enhanced heat transfer coefficient

\({C}_{p}\) :

Specific heat at constant pressure (J·kg−1·K−1)

\({D}_{TCI}\) :

Stepwise increase in thermal conductivity (%)

\({D}_{VI}\) :

Stepwise increase in viscosity (%)

\(d\) :

Characteristic length (m)

\(h\) :

Convective heat transfer coefficient (W·m−2·K−1)

\({K}_{i}\) :

Sum of all absorbance values at the i level of a single factor

\({k}_{i}\) :

Average value of each factor at all levels

\(l\) :

Geometric Characteristic Length of Heat Transfer Surface (m)

\(Nu\) :

Nusselt number

\(Pr\) :

Prandtl number

\(\text{R}\) :

Difference between the maximum value and the minimum value of \({k}_{i}\)



\(Re\) :

Reynolds number


Transient plane source

\(T\) :

Temperature (℃)

\(TCI\) :

Average value of the increase of thermal conductivity (%)

\(V\) :

Flow velocity (m·s−1)

\(VI\) :

Average value of the increase of viscosity (%)

\(w,\) :

Mass concentration of graphene (wt %)

\(\mu \) :

Viscosity (mPa·s)

\(\lambda \) :

Thermal conductivity (W·m−2·k−1)

\(\rho \) :

Density (kg·m−3)


  1. 1.

    S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed. 231, 99–106 (1995)

    Google Scholar 

  2. 2.

    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. Lau, Superior thermal conductivity of single-layer graphene. Nano. Lett. (2008). https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  3. 3.

    A. Arshad, M. Jabbal, Y. Yan, D. Reay, A review on graphene based nanofluids: preparation, characterization and applications. J. Mol. Liq. 279, 444–484 (2019)

    Article  Google Scholar 

  4. 4.

    A. Ghozatloo, M. Shariaty-Niasar, A.M. Rashidi, Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability. Int. Commun. Heat. Mass. Transfer. (2013). https://doi.org/10.1016/j.icheatmasstransfer.2012.12.007

    Article  Google Scholar 

  5. 5.

    E. Sadeghinezhad, H. Togun, M. Mehrali, P.S. Nejad, S.T. Latibari, T. Abdulrazzaq, S.N. Kazi, H.S.C. Metselaar, An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. Int. Commun. Heat. Mass. Transfer. (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.006

    Article  Google Scholar 

  6. 6.

    T.T. Baby, S. Ramaprabhu, Enhanced convective heat transfer using graphene dispersed nanofluids. Nanoscale Res. Lett. (2011). https://doi.org/10.1186/1556-276X-6-289

    Article  Google Scholar 

  7. 7.

    W. Yu, H. Xie, D. Bao, Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology. (2010). https://doi.org/10.1088/0957-4484/21/5/055705

    Article  Google Scholar 

  8. 8.

    P. Dhar, M.H.D. Ansari, S.S. Gupta, V.M. Siva, T. Pradeep, A. Pattamatta, S.K. Das, Percolation network dynamicity and sheet dynamics governed viscous behavior of poly-dispersed graphene nano-sheet suspensions. J. Nanopart. Res. (2013). https://doi.org/10.1007/s11051-013-2095-2

    Article  Google Scholar 

  9. 9.

    M.B. Moghaddam, E.K. Goharshadi, M.H. Entezari, P. Nancarrow, Preparation, characterization, and rheological properties of graphene-glycerol nanofluids. Chem. Eng. J. (2013). https://doi.org/10.1016/j.cej.2013.07.006

    Article  Google Scholar 

  10. 10.

    D. Vasudevan, D. Senthilkumar, S. Surendhiran, Performance and Characterization Studies of Reduced Graphene Oxides Aqua Nanofluids for a Pool Boiling Surface. Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-02651-6

    Article  Google Scholar 

  11. 11.

    C. Liu, T. Zhang, B. Lv, Y. Qiao, Z. Rao, Preparation and thermo-physical properties of stable graphene/water nanofluids for thermal management. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.114165

    Article  Google Scholar 

  12. 12.

    M.B. Moghaddam, E.K. Goharshadi, M.H. Entezari, P. Nancarrow, Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem. Eng. J. (2013). https://doi.org/10.1016/j.cej.2013.07.006

    Article  Google Scholar 

  13. 13.

    R.B. Ganvir, P.V. Walke, V.M. Kriplani, Heat transfer characteristics in nanofluid—A review. Renewable Sustainable Energy Rev. (2017). https://doi.org/10.1016/j.rser.2016.11.010

    Article  Google Scholar 

  14. 14.

    M. Gupta, V. Singh, R. Kumar, Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications. Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2017.02.073

    Article  Google Scholar 

  15. 15.

    T.G. Mayerhöfer, H. Mutschke, J. Popp, Employing theories far beyond their limits-the case of the (Boguer-) Beer-Lambert Law. ChemPhysChem (2016). https://doi.org/10.1002/cphc.201600114

    Article  Google Scholar 

  16. 16.

    Y. Yang, T.G. Voskuilen, T.L. Pourpoint, D.R. Guildenbecher, J.P. Gore, Determination of the thermal transport properties of ammonia borane and its thermolysis product (polyiminoborane) using the transient plane source technique. Int. J. Hydrog. Energy (2012). https://doi.org/10.1016/j.ijhydene.2011.12.011

    Article  Google Scholar 

  17. 17.

    S. Lagüela, P. Bison, F. Peron, P. Romagnoni, Thermal conductivity measurements on wood materials with transient plane source technique. Thermochim. Acta. (2015). https://doi.org/10.1016/j.tca.2014.11.021

    Article  Google Scholar 

  18. 18.

    S. Wang, Q. Ai, T. Zou, C. Sun, M. Xie, Analysis of radiation effect on thermal conductivity measurement of semi-transparent materials based on transient plane source method. Appl. Therm. Eng. (2020). https://doi.org/10.1016/j.applthermaleng.2020.115457

    Article  Google Scholar 

  19. 19.

    Q. Ai, Z. Hu, L. Wu, F. Sun, M. Xie, A single-sided method based on transient plane source technique for thermal conductivity measurement of liquids. Int. J. Heat Mass Transfer. (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.008

    Article  Google Scholar 

  20. 20.

    W. Yu, H. Xie, X. Wang, X. Wang, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A. (2011). https://doi.org/10.1016/j.physleta.2011.01.040

    Article  Google Scholar 

  21. 21.

    F. Nasirzadehroshenin, H. Maddah, H. Sakhaeinia, Investigation of exergy of double-pipe heat exchanger using synthesized hybrid nanofluid developed by modeling. Int J Thermophys. (2019). https://doi.org/10.1007/s10765-019-2551-z

    Article  Google Scholar 

  22. 22.

    G. Çakmak, H.L. Yücel, Z. Argunhan, Experimental investigation of thermal performance in a concentric-tube heat exchanger with wavy inner pipe. Int. J. Thermophys. (2012). https://doi.org/10.1007/s10765-012-1210-4

    Article  Google Scholar 

  23. 23.

    P. Hu, W.L. Shan, F. Yu, Thermal Conductivity of AlN-Ethanol Nanofluids (J. Thermophys, Int, 2008). https://doi.org/10.1007/s10765-008-0529-3

    Google Scholar 

Download references


This work was funded by National Natural Science Foundation of China [Grant No. 51406070], Projects of ‘Six talent peak’ of Jiangsu Province [Grant No. 2017-JSQC-008], and A Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information



Corresponding author

Correspondence to Fei Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, F., Wan, J., Feng, Y. et al. Experimental Study on Thermophysical Properties of Propylene Glycol-Based Graphene Nanofluids. Int J Thermophys 42, 46 (2021). https://doi.org/10.1007/s10765-021-02798-w

Download citation


  • Graphene
  • Nanofluid
  • Propylene glycol
  • Thermal conductivity
  • Viscosity