Skip to main content

Advertisement

Log in

A Simple Synthesis, Characterization, Kinetics and Thermodynamics of Zinc Ammonium Phosphate, ZnNH4PO4

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Zinc ammonium phosphate (ZnNH4PO4) was synthesized via a simple precipitation method at room temperature. Thermal decomposition of ZnNH4PO4 occurred through five stages related to the deamination (1st and 2nd steps) and deprotonated hydrogen phosphate (3rd, 4th, 5th steps) reactions and its final decomposed product at above 600 °C was zinc pyrophosphate (to γ-Zn2P2O7). ZnNH4PO4 and γ-Zn2P2O7 samples were analyzed by XRF, XRD, FT-IR and SEM techniques, which are significant for the further treatments. Kinetic parameters (Ea, A) and thermodynamic functions (ΔH*, ΔS* and ΔG*) calculated on well-known equations have been used to support for five thermal transformation processes, reported for the first time. The kinetic results indicate that the intramolecular dehydration of the protonated hydrogen phosphate groups (3rd, 4th, 5th steps) need higher-energy pathways than the deammonium reactions (1st and 2nd steps) because of harder reactions, more difficulties and lower rates. Additionally, thermodynamic results reveal that all thermal reactions are endothermic and non-spontaneous processes. The obtained data may be useful for industrialists and academicians to apply these zinc phosphates for large roles in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.H. Debray, Acad. Sci. 59, 40 (1864)

    Google Scholar 

  2. H. Anandalakshmi, K. Velavan, I. Sougandi, R. Venkatesan, P.S. Rao, Pramana 62, 77 (2004)

    Article  ADS  Google Scholar 

  3. V.G. Koleva, T.J. Boyadzhieva, R.K. Stoyanova, Cryst. Growth Des. 19, 3744 (2019)

    Article  Google Scholar 

  4. A.F. Holdsworth, H. Eccles, A.M. Halman, R.J. Mao, G. Bond, Sci. Rep. 8, 13547 (2018)

    Article  ADS  Google Scholar 

  5. P.H. Peng, W.R. Ernst, G.L. Bridger, E.M. Hartley, Ind. Eng. Chem. Proc. Des. Dev. 18, 453 (1979)

    Article  Google Scholar 

  6. A.W. Frazier, J.P. Smith, J.R. Lehr, J. Agric. Food Chem. 14, 522 (1966)

    Article  Google Scholar 

  7. G.O. Guerrant, D.E. Brown, J. Agric. Food Chem. 13, 493 (1965)

    Article  Google Scholar 

  8. C. Zeng, W. Wei, L. Zhang, CrystEngComm 14, 3008 (2012)

    Article  Google Scholar 

  9. C. Danvirutai, P. Noisong, S. Youngme, J. Therm. Anal. Calorim. 100, 117 (2010)

    Article  Google Scholar 

  10. L.M. Lapina, Russ. Chem. Rev. 37, 693 (1968)

    Article  ADS  Google Scholar 

  11. V. Barron, J. Torrent, J. Agric. Food Chem. 42, 105 (1994)

    Article  Google Scholar 

  12. J.E. Greedan, K. Reubenbauer, T. Birchall, M. Ehlert, D.R. Corbin, M.A. Subramanian, J. Solid State Chem. 77, 376 (1988)

    Article  ADS  Google Scholar 

  13. M. Shwetha, B. Eraiah, Mater. Sci. Eng. 310, 012033 (2018)

    Google Scholar 

  14. Z. Bircsak, W.T.A. Harrison, Acta Cryst. C 54, 1383 (1998)

    Article  Google Scholar 

  15. M.A. Petrova, V.I. Shitova, G.A. Mikirticheva, V.F. Popova, A.E. Malshikov, J. Solid State Chem. 119, 219 (1995)

    Article  ADS  Google Scholar 

  16. R. Baitahe, N. Vittayakorn, Thermochim. Acta 596, 21 (2014)

    Article  Google Scholar 

  17. B. Boonchom, R. Baitahe, S. Kongtaweelert, N. Vittayakorn, Ind. Eng. Chem. Res. 49, 3571 (2010)

    Article  Google Scholar 

  18. L. Guo, C.-M. Sun, G.-Y. Li, C.-P. Liu, C.-N. Ji, J. Hazard. Mater. 161, 510 (2009)

    Article  Google Scholar 

  19. T. Bataille, P. Bénard-Rocherullé, D. Louër, J. Solid State Chem. 140, 62 (1998)

    Article  ADS  Google Scholar 

  20. A. Zakeri, R. Yazdani-Rad, M.H. Enayati, M.R. Rahimipour, J. Alloys Comp. 403, 258 (2005)

    Article  Google Scholar 

  21. H.E. Kissinger, Anal. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  22. C. Popescu, Thermochim. Acta 285, 309 (1996)

    Article  MathSciNet  Google Scholar 

  23. L. Vlaev, N. Nedelchev, K. Gyurova, M. Zagorcheva, J. Anal. Appl. Pyrol. 81, 253 (2008)

    Article  Google Scholar 

  24. V. Mamleev, S. Bourbigot, M. Le Bras, S. Duquesne, J. Sestak, Phys. Chem. Chem. Phys. 2, 4708 (2000)

    Article  Google Scholar 

  25. H.F. Cordes, J. Phys. Chem. 72, 2185 (1968)

    Article  Google Scholar 

  26. S.C. Turmanova, S.D. Genieva, A.S. Dimitrova, L.T. Vlaev, Express Polym. Lett. 2, 133 (2008)

    Article  Google Scholar 

  27. J.M. Criado, L.A. Pérez-Maqueda, P.E. Sánchez-Jiménez, J. Therm. Anal. Calorim. 82, 671 (2005)

    Article  Google Scholar 

  28. D. Brandová, M. Trojan, M. Arnold, F. Paulik, J. Paulik, J. Therm. Anal. 34, 1449 (1988)

    Article  Google Scholar 

  29. C. Sronsri, B. Boonchom, J. Therm. Anal. Calorim. 134, 1575 (2018)

    Article  Google Scholar 

  30. G. Zhan, J.-X. Yu, Z.-G. Xu, F. Zhou, R.-A. Chi, Trans. Nonferr. Metals Soc. China 22, 925 (2012)

    Article  Google Scholar 

  31. W. Wenwei, W. Xuehang, L. Shuibin, L. Sen, J. Therm. Anal. Calorim. 104, 685 (2010)

    Google Scholar 

  32. B.D. Cullity, Elements of X-ray diffraction, vol. 2 (Addison Wesley Publishing, Boston, 1977)

    Google Scholar 

  33. G. Berhault, P. Afanasiev, H. Loboue, C. Geantet, T. Cseri, C. Pichon, C. Guillot-Deudon, A. Lafond, Inorg. Chem. 48, 2985 (2009)

    Article  Google Scholar 

  34. B. Boonchom, R. Baitahe, Mater. Lett. 63, 2218 (2009)

    Article  Google Scholar 

  35. A. Zecchina, L. Marchese, S. Bordiga, C. Pazè, E. Gianotti, J. Phys. Chem. B 101, 10128 (1997)

    Article  Google Scholar 

  36. N. Kongkaew, W. Pruksakit, S. Patumsawad, Energy Procedia 79, 663 (2015)

    Article  Google Scholar 

  37. Ö. Çepelioğullar, H. Haykırı-Açma, S. Yaman, Waste Manag. 48, 275 (2016)

    Article  Google Scholar 

  38. C. Head, A.C.K. Smith, Applied physical chemistry (McMilan Press, London, 1982), p. 473

    Google Scholar 

  39. J.J. Ŝesták, Thermodynamical properties of solids (Academia, Prague, 1984)

    MATH  Google Scholar 

  40. D. Young, Decomposition of solids (Pergamon Press, Oxford, 1966)

    Google Scholar 

Download references

Acknowledgements

This work is supported by King Mongkut’s Institute of Technology Ladkrabang [KREF146002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banjong Boonchom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baitahe, R., Boonchom, B. A Simple Synthesis, Characterization, Kinetics and Thermodynamics of Zinc Ammonium Phosphate, ZnNH4PO4. Int J Thermophys 41, 33 (2020). https://doi.org/10.1007/s10765-020-2610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-2610-5

Keywords

Navigation