A CFD Study of [C2mim][CH3SO3]/Al2O3 Ionanofluid Flow and Heat Transfer in Grooved Tubes

Abstract

The present article deals with the computational fluid dynamics (CFD) investigation of flow and heat transfer of a [C2mim][CH3SO3]/Al2O3 ionanofluid in one conventional tube and two different grooved tubes. The flow is considered to be single-phase and laminar (500 < Re < 2000), and the range of nanoparticle concentration is between 0.05 and 2 %. For properties of the ionanofluid, experimental data available in the literature have been used. The results of relative heat transfer coefficient, pumping power, and field synergy are presented for the three different tubes at various Reynolds numbers and ionanofluid concentrations. It is found that the effect of grooves is more pronounced at low concentrations. Moreover, the heat transfer coefficient and pumping power rise by increasing the concentration. Adding the nanoparticles has a greater impact on the heat transfer at lower Reynolds numbers. The pumping power is intensified by the Re increment. More uniform temperature and velocity distributions are achieved because of the more severe flow mixing induced by the grooves. Both the greatest heat transfer coefficient and the highest pumping power occur for the tube having the spirally corrugated grooves. The results show that the heat transfer varies by changing the geometry. At a volume concentration of 0.05 % and Re = 500, the heat transfer coefficient increases by 15.54 % in the tube with the spirally corrugated grooves compared to the conventional tube.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

C :

Heat capacity (J·K−1)

C p :

Specific heat (J·kg−1·K−1)

D :

Hydraulic diameter (m)

Fc:

Field synergy number

h :

Convective heat transfer coefficient (W·m−2·K−1)

k :

Thermal conductivity (W·m−1·K−1)

L :

Channel length (m)

Nu:

Nusselt number

Pr:

Prandtl number

q :

Wall heat flux (W·m−2)

R :

Non-dimensional tube radius

Re:

Reynolds number

T :

Temperature (K)

U :

Dimensionless tangential velocity

W :

Pumping power (W)

x, y, z :

Cartesian coordinates

\(\varTheta\) :

Dimensionless temperature

\(\theta\) :

Cylindrical coordinate

\(\mu\) :

Dynamic viscosity (kg·m−1·s−1)

\(\rho\) :

Density (kg·m−3)

\(\upsilon^\cdot\) :

Volume flow rate

bf :

Base fluid

b :

Base

nf :

Nanofluid

w :

Water

W :

Wall

References

  1. 1.

    K. Bilen, M. Cetin, H. Gul, T. Balta, Appl. Therm. Eng. 29, 753 (2009)

    Article  Google Scholar 

  2. 2.

    K. Aroonrat, C. Jumpholkul, R. Leelaprachakul, A. Dalkilic, O. Mahian, S. Wongwises, Int. Commun. Heat Mass Transf. 42, 62 (2013)

    Article  Google Scholar 

  3. 3.

    S. Xie, Z. Liang, J. Zhang, L. Zhang, Y. Wang, H. Ding, Int. J. Heat Mass Transf. 131, 713 (2019)

    Article  Google Scholar 

  4. 4.

    J. Córcoles, J. Belmonte, A. Molina, J. Almendros-Ibáñez, Int. J. Therm. Sci. 137, 262 (2019)

    Article  Google Scholar 

  5. 5.

    N. Zheng, F. Yan, K. Zhang, T. Zhou, Z. Sun, Appl. Therm. Eng. 164, 114475 (2020)

    Article  Google Scholar 

  6. 6.

    E.C. Okonkwo, I. Wole-Osho, I.W. Almanassra, Y.M. Abdullatif, T. Al-Ansari, J. Therm Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09760-2

    Article  Google Scholar 

  7. 7.

    L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, Phys. Rep. 843, 1 (2020)

    ADS  Article  Google Scholar 

  8. 8.

    K. Khanafer, K. Vafai, Renew. Energy 123, 398 (2018)

    Article  Google Scholar 

  9. 9.

    I. Wole-Osho, E.C. Okonkwo, S. Abbasoglu, D. Kavaz, Int. J. Thermophys. 41, 157 (2020)

    ADS  Article  Google Scholar 

  10. 10.

    S. Rashidi, N. Karimi, O. Mahian, J.A. Esfahani, J. Therm. Anal. Calorim. 135, 1145 (2019)

    Article  Google Scholar 

  11. 11.

    O. Bait, Sustain. Energy Technol. Assess. 37, 100597 (2020)

    Google Scholar 

  12. 12.

    N.A.C. Sidik, S. Samion, J. Ghaderian, M.N. Yazid, Int. J. Heat Mass Transf. 108, 79 (2017)

    Article  Google Scholar 

  13. 13.

    M. Bahiraei, N. Mazaheri, M.R. Daneshyar, Appl. Therm. Eng. 183, 116159 (2021)

    Article  Google Scholar 

  14. 14.

    Z. Said, M.E.H. Assad, A.A. Hachicha, E. Bellos, M.A. Abdelkareem, D.Z. Alazaizeh, B.A. Yousef, Renew. Sustain. Energ. Rev. 112, 183 (2019)

    Article  Google Scholar 

  15. 15.

    S.Z. Heris, M.N. Esfahany, G. Etemad, Num. Heat Transf. A 52, 1043 (2007)

    Article  Google Scholar 

  16. 16.

    A. Navaei, H. Mohammed, K. Munisamy, H. Yarmand, S. Gharehkhani, Powder Technol. 286, 332 (2015)

    Article  Google Scholar 

  17. 17.

    S. Mukherjee, S.R. Panda, P.C. Mishra, P. Chaudhuri, Int. J. Thermophys. 41, 1 (2020)

    Article  Google Scholar 

  18. 18.

    O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, J.S. Marshall, M. Siavashi, R.A. Taylor, H. Niazmand, S. Wongwises, T. Hayat, A. Kasaeian, A. Pop, Phys. Rep. 790, 1 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    S.M. Vanaki, P. Ganesan, H.A. Mohammed, Renew. Sustain. Energy Rev. 54, 1212 (2016)

    Article  Google Scholar 

  20. 20.

    O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, J.S. Marshall, R.A. Taylor, E. Abu-Nada, S. Rashidi, H. Niazmand, S. Wongwises, T. Hayat, A. Kasaeian, I. Pop, Phys. Rep. 791, 1 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    M. Bahiraei, J. Disper. Sci. Technol. 35, 984 (2014)

    Article  Google Scholar 

  22. 22.

    T.C. Paul, R. Mahamud, J.A. Khan, Appl. Therm. Eng. 149, 165 (2019)

    Article  Google Scholar 

  23. 23.

    E.I. Cherecheş, A.A. Minea, K. Sharma, Int. J. Heat Mass Transf. 154, 119674 (2020)

    Article  Google Scholar 

  24. 24.

    E.I. Chereches, M. Chereches, A. Alexandru, A. Dima, A.A. Minea, Heat Transf. Eng. (2020). https://doi.org/10.1080/01457632.2020.1818372

    Article  Google Scholar 

  25. 25.

    G. Huminic, A. Huminic, Int. J. Thermophys. 42, 12 (2021)

    ADS  Article  Google Scholar 

  26. 26.

    A. Joseph, P. RadhakrishnanNair, S. Mathew, Int. J. Thermophys. 41, 168 (2020)

    ADS  Article  Google Scholar 

  27. 27.

    D. Lozano-Martín, S. Inês Cardoso Vieira, X. Paredes, M.J. Vitoriano Lourenço, C.A. Nieto de Castro, J.V. Sengers, K. Massonne, Molecules 25, 4290 (2020)

    Article  Google Scholar 

  28. 28.

    S. Senthilraja, K. Vijayakumar, R. Gangadevi, Digest J. Nanomat. Biostruc. 10, 1449 (2015)

    Google Scholar 

  29. 29.

    D.-H. Yoo, K. Hong, T. Hong, J. Eastman, H.-S. Yang, J. Korean Phys Soc. 51, 84 (2007)

    Article  Google Scholar 

  30. 30.

    C. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, H.A. Mintsa, Int. J. Therm. Sci. 47, 103 (2008)

    Article  Google Scholar 

  31. 31.

    E.I. Cherecheş, D. Bejan, C. Ibanescu, M. Danu, A.A. Minea, Chem. Eng. Sci. 229, 116140 (2021)

    Article  Google Scholar 

  32. 32.

    R. Shah, A. London, Laminar Flow Forced Convection in Ducts (Academic Press, New York, 1978)

    Google Scholar 

  33. 33.

    Z. Guo, D. Li, B. Wang, Int. J. Heat Mass Transf. 41, 2221 (1998)

    MathSciNet  Article  Google Scholar 

  34. 34.

    A.A. Minea, O. Manca, Heat Transf. Eng. 38, 909 (2017)

    ADS  Article  Google Scholar 

  35. 35.

    T.W. Ting, Y.M. Hung, N. Guo, Int. J. Heat Mass Transf. 73, 483 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges Postdoctoral Fellowship from KMUTT. The third author acknowledges the support provided by the “Research Chair Grant” National Science and Technology Development Agency (NSTDA), and King Mongkut’s University of Technology Thonburi through the “KMUTT 55th Anniversary Commemorative Fund”.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Bahiraei or Amin Jodat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue on Nanoparticle-enhanced Ionic Liquids.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mesgarpour, M., Bahiraei, M., Wongwises, S. et al. A CFD Study of [C2mim][CH3SO3]/Al2O3 Ionanofluid Flow and Heat Transfer in Grooved Tubes. Int J Thermophys 42, 32 (2021). https://doi.org/10.1007/s10765-020-02783-9

Download citation

Keywords

  • Grooved tube
  • Heat transfer enhancement
  • Ionanofluid
  • Numerical solution
  • Pumping power
  • Variable properties