Thermal Conductivity Enhancement via Synthesis Produces a New Hybrid Mixture Composed of Copper Oxide and Multi-walled Carbon Nanotube Dispersed in Water: Experimental Characterization and Artificial Neural Network Modeling

Abstract

Nanofluid is a solid–fluid mixture. By using one solid nanoparticle or one fluid, mono-nanofluid (MN) forms, and by using two solid nanoparticles (NPs) or two fluids, hybrid-nanofluid (HN) forms. For this study, for MN, copper oxide (CuO) and for HN, two solids, which are CuO and multi-walled carbon nanotube (MWCNT) were dispersed in base fluid which is water. After nanofluid preparation, thermal conductivity was measured, and the achievements were numerically modeled. After that, XRD–EDX were performed for the phase-structural analysis. Then, FESEM was examined for NPs-microstructural study. Thermal conductivity (TC) of MN and HN were investigated at 0.2 % to 1.0 % volume fractions (Vf) in 25 °C to 50 °C temperature (T) ranges. Thermal conductivity enhancements of 19.16 % and 37.05 % were seen at the utmost Vf and T for mono-nanofluid and hybrid-nanofluid, respectively. New correlations have been presented with R2 = 0.9, and also Artificial Neural Network (ANN) has been done with R2 = 0.999. For the presented correlation, 0.86 %, and 0.51 % deviations, and for the trained model, 0.41 % and 0.51 % deviations were estimated for mono-nanofluid and hybrid-nanofluid, respectively. As a final result, by adding MWCNT to CuO–H2O mixture, thermal conductivity is raised by 17.89 %, and the hybrid-nanofluid has acceptable heat-transfer capability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Availability of Data

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

XRD:

X-ray diffraction analysis

EDX:

Energy dispersive X-ray analysis

FESEM:

Field emission scanning electron microscope

Vf:

Volume fraction

MN:

Mono-nanofluid

HN:

Hybrid-nanofluid

TC:

Thermal conductivity

TCR:

Thermal conductivity ratio

TCE:

Thermal conductivity enhancement

CMC:

Carboxyl methyl cellulose

CuO:

Copper oxide

MWCNT:

Multi-walled carbon nanotube

bf:

Base fluid

nf:

Nanofluid

Exp:

Experimental

pred:

Predicted

NPs:

Nanoparticles

r:

Ratio

k:

Thermal conductivity

φ:

Volume fraction

T:

Temperature

References

  1. 1.

    A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin, Int. J. Heat Mass Transf. (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.004

    Article  Google Scholar 

  2. 2.

    L. Chen, H. Xie, Y. Li, W. Yu, Thermochim. Acta (2008). https://doi.org/10.1016/j.tca.2008.08.001

    Article  Google Scholar 

  3. 3.

    H. Jiang, Q. Zhang, L. Shi, J. Taiwan Inst. Chem. Eng. (2015). https://doi.org/10.1016/j.jtice.2015.03.037

    Article  Google Scholar 

  4. 4.

    R. Agarwal, K. Verma, N.K. Agrawal, R.K. Duchaniya, R. Singh, Appl. Therm. Eng. (2016). https://doi.org/10.1016/j.applthermaleng.2016.04.051

    Article  Google Scholar 

  5. 5.

    C.L. Carnes, J. Stipp, K.J. Klabunde, J. Bonevich, Langmuir (2002). https://doi.org/10.1021/la010701p

    Article  Google Scholar 

  6. 6.

    S. Senthilraja, K. Vijayakumar, R. Gangadevi, Digest J. Nanomater. Biostruct. 10, 1449–1458 (2015)

    Google Scholar 

  7. 7.

    M. Bahrami, M. Akbari, A. Karimipour, M. Afrand, Exp. Therm. Fluid Sci. (2016). https://doi.org/10.1016/j.expthermflusci.2016.07.015

    Article  Google Scholar 

  8. 8.

    R.M. Sarviya, V. Fuskele, Mater. Today Proc. 4, 4022–4031 (2017)

    Article  Google Scholar 

  9. 9.

    G. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 36, 2 (2015). https://doi.org/10.1007/s10765-015-1856-9

    Article  Google Scholar 

  10. 10.

    M.U. Sajid, H.M. Ali, Int. J. Heat Mass Transf. (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021

    Article  Google Scholar 

  11. 11.

    M.H. Ahmadi, A. Mirlohi, M.A. Nazari, R. Ghasempour, J. Mol. Liq. (2018). https://doi.org/10.1016/j.molliq.2018.05.124

    Article  Google Scholar 

  12. 12.

    M.H. Esfe, M. Afrand, J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08406-2

    Article  Google Scholar 

  13. 13.

    M.M. Tawfik, Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2016.11.111

    Article  Google Scholar 

  14. 14.

    W.I. Liu, O. Malekahmadi, S.A. Bagherzadeh, M. Ghashang, A. Karimipour, S. Hasani, I. Tlili, M. Goodarzi, Int. Commun. Heat Mass Transf. (2019). https://doi.org/10.1016/j.icheatmasstransfer.2019.104333

    Article  Google Scholar 

  15. 15.

    P. Martínez-Merino, A. Sánchez-Coronilla, R. Alcántara, E.I. Martín, I. Carrillo-Berdugo, R. Gómez-Villarejo, J. Navas, Nanomaterials. (2020). https://doi.org/10.3390/nano10050970

    Article  Google Scholar 

  16. 16.

    M.H. Esfe, K. Motahari, E. Sanatizadeh, M. Afrand, H. Rostamian, M.R.H. Ahangar, Int. Commun. Heat Mass Transfer (2016). https://doi.org/10.1016/j.icheatmasstransfer.2015.12.012

    Article  Google Scholar 

  17. 17.

    M.H. Esfe, S. Esfandeh, M.K. Amiri, M. Afrand, Powder Technol. (2019). https://doi.org/10.1016/j.powtec.2018.10.008

    Article  Google Scholar 

  18. 18.

    J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Carbon (2011). https://doi.org/10.1016/j.carbon.2011.03.028

    Article  Google Scholar 

  19. 19.

    P.N. Venkatesan, S. Dharmalingam, J. Membr. Sci. (2013). https://doi.org/10.1016/j.memsci.2013.01.064

    Article  Google Scholar 

  20. 20.

    M. Ahamed, H.A. Alhadlaq, M.A. Khan, P. Karuppiah, N.A. Al-Dhabi, J. Nanomater. (2014). https://doi.org/10.1155/2014/637858

    Article  Google Scholar 

  21. 21.

    S. Jadhav, S. Gaikwad, M. Nimse, A. Rajbhoj, J. Cluster Sci. (2011). https://doi.org/10.1007/s10876-011-0349-7

    Article  Google Scholar 

  22. 22.

    S. Sedaghat, M. Nasiri, Int. J. Bio-Inorg. Hybrid Nanomateri. 4, 203–207 (2015)

    Google Scholar 

  23. 23.

    A. Baykal, M. Senel, B. Unal, E. Karaoğlu, H. Sözeri, M.S. Toprak, J. Inorg. Organomet. Polym Mater. (2013). https://doi.org/10.1007/s10904-013-9839-4

    Article  Google Scholar 

  24. 24.

    E.Y. Malikov, M.B. Muradov, O.H. Akperov, G.M. Eyvazova, R. Puskás, D. Madarász, L. Nagy, Á. Kukovecz, Z. Kónya, Phys. E Low-dimens. Syst. Nanostruct. (2014). https://doi.org/10.1016/j.physe.2014.03.026

    Article  Google Scholar 

  25. 25.

    L. Y. Jun, L. S. Yon, N. M. Mubarak, K. S. Yeo, M. Khalid, C. H. Bing, IOP Conference Series: Materials Science and Engineering (2019)

  26. 26.

    G.J. Tertsinidou, C.M. Tsolakidou, M. Pantzali, M.J. Assael, L. Colla, L. Fedele, S. Bobbo, W.A. Wakeham, J. Chem. Eng. Data. (2017). https://doi.org/10.1021/acs.jced.6b00767

    Article  Google Scholar 

  27. 27.

    G.J. Tertsinidou, C.M. Tsolakidou, M. Pantzali, M.J. Assael, L. Colla, L. Fedele, S. Bobbo, W.A. Wakeham, J. Chem. Eng. Data. (2018). https://doi.org/10.1021/acs.jced.8b00774

    Article  Google Scholar 

  28. 28.

    S. Ebrahimi, S.F. Saghravani, Heat Mass Transf. (2018). https://doi.org/10.1007/s00231-017-2188-z

    Article  Google Scholar 

  29. 29.

    ASHRAE, Ashrae Handbook HVAC applications. (2015)

  30. 30.

    D. R. Cobos, Using the KD2 Pro to measure thermal properties of fluids. Application Note, Decagon Devices (2010)

  31. 31.

    A. Asadi, I.M. Alarifi, V. Ali, H.M. Nguyen, Ultrason. Sonochem. (2019). https://doi.org/10.1016/j.ultsonch.2019.104639

    Article  Google Scholar 

  32. 32.

    M.H. Esfe, S. Saedodin, W.M. Yan, M. Afrand, N. Sina, J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-016-5423-9

    Article  Google Scholar 

  33. 33.

    S. Ebrahimi, S.F. Saghravani, Heat Mass Transf. (2017). https://doi.org/10.1016/j.jmmm.2017.05.090

    Article  Google Scholar 

  34. 34.

    T.X. Phuoc, M. Massoudi, R.H. Chen, Int. J. Therm. Sci. (2011). https://doi.org/10.1016/j.ijthermalsci.2010.09.008

    Article  Google Scholar 

  35. 35.

    K. Abdul Hamid, W.H. Azmi, R. Mamat, N.A. Usri, Indian J. Pure Appl. Phys. 54, 651–655 (2016)

    Google Scholar 

  36. 36.

    M. Soltanimehr, M. Afrand, Appl. Therm. Eng. (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.089

    Article  Google Scholar 

  37. 37.

    I. Kazemi, M. Sefid, M. Afrand, Powder Technol. (2020). https://doi.org/10.1016/j.powtec.2020.02.010

    Article  Google Scholar 

  38. 38.

    S. Sarkar, R.P. Selvam, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2785009

    Article  Google Scholar 

  39. 39.

    A. Shahsavar, M. Bahiraei, Powder Technol. (2017). https://doi.org/10.1016/j.powtec.2017.06.023

    Article  Google Scholar 

  40. 40.

    M. Ramezanizadeh, M. Alhuyi Nazari, Int. J. Low-Carbon Technol. (2019). https://doi.org/10.1093/ijlct/ctz030

    Article  Google Scholar 

  41. 41.

    Y. Xu, Q. Nguyen, O. Malekahmadi, R. Hadi, Z. Jokar, A. Mardani, A. Karimipour, R. Ranjbarzadeh, Z. Li, Q.V. Bach, Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6381

    Article  Google Scholar 

  42. 42.

    A. Ghasemi, M. Hassani, M. Goodarzi, M. Afrand, S. Manafi, Phys. A (2019). https://doi.org/10.1016/j.physa.2018.09.004

    Article  Google Scholar 

  43. 43.

    M.A. Taghikhani, Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2507-3

    Article  Google Scholar 

  44. 44.

    F. Nasirzadehroshenin, H. Maddah, H. Sakhaeinia et al., Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2551-z

    Article  Google Scholar 

  45. 45.

    R. Tariq, Y. Hussain, N.A. Sheikh et al., Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-2619-9

    Article  Google Scholar 

  46. 46.

    B. Wang, W. Sheng, X. Peng, Int. J. Thermophys. (2009). https://doi.org/10.1007/s10765-009-0673-4

    Article  Google Scholar 

  47. 47.

    S. Eiamsa-ard, K. Kiatkittipong, Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2485-5

    Article  Google Scholar 

  48. 48.

    S. Malekian, E. Fathi, N. Malekian et al., Int. J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2422-z

    Article  Google Scholar 

  49. 49.

    A. Moradikazerouni, A. Hajizadeh, M.R. Safaei, M. Afrand, H. Yarmand, N.W.B.M. Zulkifli, Phys. A (2019). https://doi.org/10.1016/j.physa.2019.01.051

    Article  Google Scholar 

  50. 50.

    M. Afrand, M.H. Esfe, E. Abedini, H. Teimouri, Phys. E (2017). https://doi.org/10.1016/j.physe.2016.10.020

    Article  Google Scholar 

  51. 51.

    F. Franks, Royal Society of Chemistry. ISBN 9781847552341 (2007)

  52. 52.

    H. Wayne Richardson, Kirk-Othmer Encycl. Chem. Technol. (2000). https://doi.org/10.1002/0471238961.0315161618090308.a01.pub2

    Article  Google Scholar 

  53. 53.

    P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001). https://doi.org/10.1103/PhysRevLett.87.215502

    ADS  Article  Google Scholar 

  54. 54.

    A. Ijam, A.M. Golsheikh, R. Saidur, P. Ganesan, J. Mater. Sci. (2014). https://doi.org/10.1007/s10853-014-8312-2

    Article  Google Scholar 

  55. 55.

    E. Sadeghinezhad, H. Togun, M. Mehrali, P.S. Nejad, S.T. Latibari, T. Abdulrazzaq, S.N. Kazi, H.S.C. Metselaar, Int. J. Heat Mass Transf. (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.006

    Article  Google Scholar 

  56. 56.

    S. Sen Gupta, V. Manoj Siva, S. Krishnan, T.S. Sreeprasad, P.K. Singh, T. Pradeep, S.K. Das, J. Appl. Phys. (2011). https://doi.org/10.1063/1.3650456

    Article  Google Scholar 

  57. 57.

    M.R. Esfahani, E.M. Languri, M.R. Nunna, Int. Commun. Heat Mass Transfer (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.06.006

    Article  Google Scholar 

  58. 58.

    Glory, J., Bonetti, M., Helezen, M., Mayne-L’Hermite, M., & Reynaud, C. (2008), Journal of applied physics. https://doi.org/10.1063/1.2908229

  59. 59.

    M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham, Int. J. Thermophys. (2004). https://doi.org/10.1023/B:IJOT.0000038494.22494.04

    Article  Google Scholar 

  60. 60.

    Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park, J.K. Lee, Curr. Appl. Phys. (2006). https://doi.org/10.1016/j.cap.2005.07.021

    Article  Google Scholar 

  61. 61.

    S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer (2003). https://doi.org/10.1115/1.1571080

    Article  Google Scholar 

  62. 62.

    J. Jeong, C. Li, Y. Kwon, J. Lee, S.H. Kim, R. Yun, Int. J. Refrig (2013). https://doi.org/10.1016/j.ijrefrig.2013.07.024

    Article  Google Scholar 

  63. 63.

    M.H. Esfe, S. Saedodin, J. Therm. Anal. Calorim. (2015). https://doi.org/10.1007/s10973-014-4197-1

    Article  Google Scholar 

  64. 64.

    C. Du, Q. Nguyen, O. Malekahmadi, A. Mardani, Z. Jokar, E. Babadi, A. D’Orazio, A. Karimipour, Z. Li, Q.V. Bach, Math. Sci. Methods Appl. (2020). https://doi.org/10.1002/mma.6466

    Article  Google Scholar 

  65. 65.

    N. Jha, S. Ramaprabhu, J. Appl. Phys. (2009). https://doi.org/10.1063/1.3240307

    Article  Google Scholar 

  66. 66.

    L.S. Sundar, M.K. Singh, E.V. Ramana, B. Singh, J. Grácio, A.C. Sousa, Sci. Rep. (2014). https://doi.org/10.1038/srep04039

    Article  Google Scholar 

  67. 67.

    C.H. Chon, K.D. Kihm, S.P. Lee, S.U. Choi, Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.2093936

    Article  Google Scholar 

  68. 68.

    A.A. Nadooshan, Phys. E (2017). https://doi.org/10.1016/j.physe.2016.11.004

    Article  Google Scholar 

  69. 69.

    M.H. Mirbagheri, M. Akbari, B. Mehmandoust, Int. Commun. Heat Mass Transf. (2018). https://doi.org/10.1016/j.icheatmasstransfer.2018.09.007

    Article  Google Scholar 

  70. 70.

    A. Akhgar, D. Toghraie, Powder Technol. (2018). https://doi.org/10.1016/j.powtec.2018.07.086

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported by Australian Research Council (No. DE190100931).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arash Karimipour.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karimipour, A., Malekahmadi, O., Karimipour, A. et al. Thermal Conductivity Enhancement via Synthesis Produces a New Hybrid Mixture Composed of Copper Oxide and Multi-walled Carbon Nanotube Dispersed in Water: Experimental Characterization and Artificial Neural Network Modeling. Int J Thermophys 41, 116 (2020). https://doi.org/10.1007/s10765-020-02702-y

Download citation

Keywords

  • Artificial Neural Network (ANN)
  • CuO/water
  • MWCNT
  • Numerical modeling
  • Thermal conductivity