Pressure Dependence of Viscosity for Methyl Oleate and Methyl Linoleate up to 400 MPa

Abstract

In this work, the conductance versus sweep frequency for AT-cut quartz crystal resonators was measured for methyl myristate, methyl oleate, and methyl linoleate under high pressure. The response of resonators immersed in methyl myristate at each temperature (313 K, 333 K, and 353 K) was obtained at pressures up to 140 MPa. The obtained values were nearly similar for both the fundamental mode and third overtone, and the obtained viscosities agreed with the literature data up to 100 MPa. For methyl oleate and methyl linoleate, the pressure dependence of the viscosity at various temperatures (293 K, 313 K, 333 K, and 353 K) was obtained up to 400 MPa. The viscosity increased exponentially in the low-pressure region with increasing pressure, but the rate of increase slowed above ~ 150 MPa and the viscosity deviated from an exponential increase. Fitting was performed using a Tait-type equation, and the deviation from the fitted value was calculated using this fitting equation. The pressure dependence of the viscosity could be obtained within 10 % of absolute average deviation (AAD) with a sample volume of ~ 2 mL using simple experimental equipment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    H. Yamawaki, Int. J. Thermophys. 38, 64 (2017). https://doi.org/10.1007/s10765-017-2198-6

    ADS  Article  Google Scholar 

  2. 2.

    H. Yamawaki, Int. J. Thermophys. 39, 98 (2018). https://doi.org/10.1007/s10765-018-2419-7

    ADS  Article  Google Scholar 

  3. 3.

    H. Yamawaki, J. Appl. Phys. 127, 094701 (2020). https://doi.org/10.1063/1.5143161

    ADS  Article  Google Scholar 

  4. 4.

    M. Cassiède, J.-L. Daridon, J.H. Paillol, J. Pauly, J. Appl. Phys. 108, 034505 (2010). https://doi.org/10.1063/1.3460805

    ADS  Article  Google Scholar 

  5. 5.

    M. Cassiède, J.-L. Daridon, J.H. Paillol, J. Pauly, J. Appl. Phys. 109, 074501 (2011). https://doi.org/10.1063/1.3562176

    ADS  Article  Google Scholar 

  6. 6.

    J.-L. Daridon, M. Cassiède, J.H. Paillol, J. Pauly, Rev. Sci. Instrum. 82, 095114 (2011). https://doi.org/10.1063/1.3638465

    ADS  Article  Google Scholar 

  7. 7.

    M. Habrioux, J.-P. Bazile, G. Galliero, J.L. Daridon, J. Chem. Eng. Data 60, 902 (2015). https://doi.org/10.1021/je500980a

    Article  Google Scholar 

  8. 8.

    M. Habrioux, D. Nasri, J.L. Daridon, J. Chem. Thermodyn. 120, 1 (2018). https://doi.org/10.1016/j.jct.2017.12.020

    Article  Google Scholar 

  9. 9.

    M. Habrioux, J.-P. Bazile, G. Galliero, J. Luc Daridon, J. Chem. Eng. Data 61, 398 (2016). https://doi.org/10.1021/acs.jced.5b00612

    Article  Google Scholar 

  10. 10.

    H. Fujiwara, H. Kadomatsu, K. Tohma, Rev. Sci. Instrum. 51, 1345 (1980). https://doi.org/10.1063/1.1136061

    ADS  Article  Google Scholar 

  11. 11.

    K.K. Kanazawa, J.G. GordonII, Anal. Chim. Acta 175, 99–105 (1985). https://doi.org/10.1016/S0003-2670(00)82721-X

    Article  Google Scholar 

  12. 12.

    E.H.I. Ndiaye, M. Habrioux, J.A.P. Coutinho, M.L.L. Paredes, J.L. Daridon, J. Chem. Eng. Data 58, 1371–1377 (2013). https://doi.org/10.1021/je400122k

    Article  Google Scholar 

  13. 13.

    E.H.I. Ndiaye, M. Habrioux, J.A.P. Coutinho, M.L.L. Paredes, J.L. Daridon, J. Chem. Eng. Data 58, 2345–2354 (2013). https://doi.org/10.1021/je4005323

    Article  Google Scholar 

  14. 14.

    D.R. Caudwell, J.P.M. Trusler, V. Vesovic, W.A. Wakeham, Int. J. Thermophys. 25, 1339 (2004). https://doi.org/10.1007/s10765-004-5742-0

    ADS  Article  Google Scholar 

  15. 15.

    M.J. Pratas, S. Freitas, M.B. Oliveira, S.C. Monteiro, A.S. Lima, J.A.P. Coutinho, J. Chem. Eng. Data 55, 3983 (2010). https://doi.org/10.1021/je100042c

    Article  Google Scholar 

  16. 16.

    K.R. Harris, J. Chem. Eng. Data 54, 2729–2738 (2009). https://doi.org/10.1021/je900284z

    Article  Google Scholar 

  17. 17.

    H.E. King Jr., E. Herbolzheimer, R.L. Cook, J. Appl. Phys. 71, 2071 (1992). https://doi.org/10.1063/1.351157

    ADS  Article  Google Scholar 

  18. 18.

    B.A. Bamgbade, Y. Wu, H.O. Baled, R.M. Enick, W.A. Burgess, D. Tapriyal, M.A. McHugh, J. Chem. Thermodyn. 63, 102 (2013). https://doi.org/10.1016/j.jct.2013.04.010

    Article  Google Scholar 

  19. 19.

    I. K. Gamwo, D. Tapriyal, R. M. Enick, M. A. McHugh, B. D. Morreale, High Temperature, High Pressure Equation of State: Solidification of Hydrocarbons and Measurement of Krytox Oil Using Rolling-Ball Viscometer Validation. NETL-TRS-5-2014, EPAct Technical Report Series (U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2014), p. 48. https://doi.org/10.18141/1432512

Download references

Acknowledgments

We thank Arun Paraecattil, Ph.D., from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamawaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4098 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamawaki, H. Pressure Dependence of Viscosity for Methyl Oleate and Methyl Linoleate up to 400 MPa. Int J Thermophys 41, 112 (2020). https://doi.org/10.1007/s10765-020-02693-w

Download citation

Keywords

  • High pressure
  • Methyl oleate
  • Methyl linoleate
  • Quartz crystal resonator
  • Viscosity