Comparative Analysis of Thermal Processing Approaches for a CFRP Element Aided by UT Control

Abstract

The present work resumes thermal data processing with most common algorithms in literature and introduces in addition a different data processing strategy, proposed to improve subsurface defect detection on industrial composites. These materials are successfully controlled with infrared Non-Destructive Investigations, since defects are easily detected by temperature response under thermal pulses with reliable results. To reduce application limits for non-destructive inspections, the proposed research shows possibility to combine pulsed thermographic technique with accurate image-processing methods implemented in Matlab environment for a reliable and rapid characterization of subsurface and internal damage. Thermal processing methods are evaluated for the proposed case of study, as the well-established DAC, PCT, TSR procedures. In addition, the authors proposed a better defect characterization that is achieved with refined data processing and accurate experimental procedures, providing detailed contrast maps where defects are easily distinguished. This improved algorithm automates the defect mapping and enhances the accuracy of defects inspection, optimized to identify defect boundaries according to spatial variations in neighboring of each calculation point of the whole thermal frame. Thermal data are evaluated with standard methods and the local boundary method is for carbon-fiber composite specimens with artificial defects, evaluating processed images obtained by different methods employing the Tanimoto criterion. Proposed thermal computation method is found suitable for automatic mapping of defect distribution and optimized for simultaneous defect boundaries’ detection in terms of Tanimoto criterion, in the inspected structure. In addition, ultrasonic controls are carried out for detection comparison between different control procedures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    B. Wang, S. Zhong, T.L. Lee, K.S. Fancey, J. Mi, Adv. Mech. Eng. (2020). https://doi.org/10.1177/1687814020913761

    Article  Google Scholar 

  2. 2.

    R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, Bulnes FG. Sens. (2014). https://doi.org/10.3390/s140712305

    Article  Google Scholar 

  3. 3.

    U. Galietti, E. D’Accardi, D. Palumbo, R. Tamborrino, Metals 8, 10 (2018). https://doi.org/10.3390/met8100859

    Article  Google Scholar 

  4. 4.

    S. Hiasa, R. Birgul, F.N. Catbas, J. Nondestr. Eval. 36, 3 (2017). https://doi.org/10.1007/s10921-017-0435-3

    Article  Google Scholar 

  5. 5.

    S. Danesi, A. Salerno, D. Wu, G. Busse, Thermosense (1998). https://doi.org/10.1117/12.304736

    Article  Google Scholar 

  6. 6.

    Z. Wang, G. Tian, M. Meo, F. Ciampa, NDT E Intern. (2018). https://doi.org/10.1016/j.ndteint.2018.07.004

    Article  Google Scholar 

  7. 7.

    D.P. Almond, S.L. Angioni, S.G. Pickering, NDT E Intern. (2017). https://doi.org/10.1016/j.ndteint.2017.01.003

    Article  Google Scholar 

  8. 8.

    R. Usamentiaga, D.F. García, J. Molleda, J. Electr. Imag. 17, 3 (2008). https://doi.org/10.1117/1.2952844

    Article  Google Scholar 

  9. 9.

    J. Sun, Quantitat. InfraRed Thermo. J. 10, 1 (2013). https://doi.org/10.1080/17686733.2012.757860

    Article  Google Scholar 

  10. 10.

    C. Garnier, M.L. Pastor, F. Eyma, B. Lorrain, Comp. Struct. (2011). https://doi.org/10.1016/j.compstruct.2010.10.017

    Article  Google Scholar 

  11. 11.

    D. Palumbo, R. de Finis, G.P. Demelio, U. Galietti, Compos. Part B (2016). https://doi.org/10.1016/j.compositesb.2016.08.007

    Article  Google Scholar 

  12. 12.

    C. Ibarra-Castanedo, A. Bendada, X. Maldague, GESTS Int. Trans. Comput. Sci. Eng. 22, 1 (2005)

    Google Scholar 

  13. 13.

    D.L. Balageas, B. Chapuis, G. Deban, F. Passilly, Quant. InfraRed Thermogr. J. (2010). https://doi.org/10.3166/qirt.7.167-187

    Article  Google Scholar 

  14. 14.

    N. Rajic, Compos. Struct. 58, 4 (2002). https://doi.org/10.1016/S0263-8223(02)00161-7

    Article  Google Scholar 

  15. 15.

    V. Dattoma, A. Panella, A. Pirinu, A. Saponaro, Appl. Sci. 9, 3 (2019). https://doi.org/10.3390/app9030393

    Article  Google Scholar 

  16. 16.

    G. Giorleo, C. Meola, NDT & E Interna. 35, 5 (2002). https://doi.org/10.1016/S0963-8695(01)00062-7

    Article  Google Scholar 

  17. 17.

    V. Dattoma, F.W. Panella, R. Nobile, A. Pirinu, Procedia Struct. Integr. (2018). https://doi.org/10.1016/j.prostr.2018.11.111

    Article  Google Scholar 

  18. 18.

    X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing. Hoboken: John Wiley & Sons, Inc., 2001, Wiley Series in Microwave and Optical Engineering, ISBN 9780471181903

  19. 19.

    C. Ibarra-Castanedo, X. Maldague, Handbook of Technical Diagnostics: Fundamentals and Application to Structures and Systems, Part II: Methods and Techniques for Diagnostics and Monitoring, Cap. 10: Infrared Thermography, Horst Czichos Editor, 2013, Springer Science & Business Media, ISBN 9783642258503

  20. 20.

    M. Pilla, M. Klein, X. Maldague, A. Salerno, Proc. Int. (2002). https://doi.org/10.21611/qirt.2002.004

    Article  Google Scholar 

  21. 21.

    M. Klein, A. Bendada, M. Pilla, C. Ibarra-Castanedo, X. Maldague, Quant. InfraRed Thermogr. J. (2008). https://doi.org/10.21611/qirt.2008.08_02_03

    Article  Google Scholar 

  22. 22.

    D. Gonzalez, C. Ibarra-Castanedo, M. Pilla, M. Klein, J. Lopez-Higuera, X. Maldague, Proc. Quant. Infrared Thermogr. (2004). https://doi.org/10.21611/qirt.2004.014

    Article  Google Scholar 

  23. 23.

    H. Benitez, C. Ibarra-Castanedo, A. Bendada, X. Maldague, H. Loaiza, E. Caicedo, Infrared Phys. Technol. 51, 160–167 (2008). https://doi.org/10.1016/j.infrared.2007.01.001

    ADS  Article  Google Scholar 

  24. 24.

    S. Hiasa, R. Birgul, F. Catbas, Comput. Struct. (2017). https://doi.org/10.1016/j.compstruc.2017.05.011

    Article  Google Scholar 

  25. 25.

    C. Ibarra-Castanedo, M. Genest, J.M. Piau, S. Guibert, A. Bendada, X.P.V. Maldague, Active infrared thermography NDT techniques, Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, pp. 325-348 (2007) https://doi.org/10.1142/9789812770943_0014

  26. 26.

    S.M. Shepard, J.R. Lhota, B.A. Rubadeux, D. Wang, T. Ahmed, Opt. Eng. 42, 5 (2003). https://doi.org/10.1117/1.1566969

    Article  Google Scholar 

  27. 27.

    D. Balageas, J.M. Roche, Quant. InfraRed Thermogr. J. 11, 1 (2014). https://doi.org/10.1080/17686733.2014.891324

    Article  Google Scholar 

  28. 28.

    N. Rajic, Principal component thermography, Defense Science and Technology Organization Victoria (Australia) Aeronautical and Maritime Research Laboratory, 2002, Technical report DSTO-TR-1298

  29. 29.

    C. Ibarra-Castanedo, D. Gonzalez, M. Klein, M. Pilla, S. Vallerand, X. Maldague, Infra. Phys. & Techno. 46, 1–2 (2004). https://doi.org/10.1016/j.infrared.2004.03.011

    Article  Google Scholar 

  30. 30.

    S. Marinetti, E Grinzato, P.G. Bison, E. Bossi, M. Chimenti, G. Pieri, O. Salvatti, Infrared Phys. and Techn., 46 (2004) https://doi.org/10.1016/j.infrared.2004.03.012

  31. 31.

    N. Rajic, Res. Nondestruct. Eval. 12, 2 (2000). https://doi.org/10.1080/09349840009409654

    Article  Google Scholar 

  32. 32.

    J.C. Ramirez-Granados, G. Paez, M. Strojnik, Appl. Optics 49, 9 (2010). https://doi.org/10.1364/AO.49.001494

    Article  Google Scholar 

  33. 33.

    S.M. Shepard, J.R. Lhota, B.A. Rubadeux, T. Ahmed, D. Wang, Thermosense XXIV, 4710 (2002) https://doi.org/10.1117/12.459603

  34. 34.

    M.A. Omar, Y. Zhou, Phys. Technol. 51, 4 (2008). https://doi.org/10.1016/j.infrared.2007.09.006

    Article  Google Scholar 

  35. 35.

    X.P.V. Maldague, S. Marinetti, J. Appl. Phys. 79, 5 (1996). https://doi.org/10.1063/1.362662

    Article  Google Scholar 

  36. 36.

    S.M. Shepard Flash thermography of aerospace composites, Proceedings of the IV Conferencia Panamericana de END, 22–26 October 2007, Buenos Aires, Argentina, pp. 1-7

  37. 37.

    J.G. Sun, J. Heat Transfer 128, 4 (2006). https://doi.org/10.1115/1.2165211

    Article  Google Scholar 

  38. 38.

    S.M. Shepard, Understanding flash thermography. Mater. Eval. 64, 5 (2006)

    Google Scholar 

  39. 39.

    S.M. Shepard, J. Hou, J.R. Lhota, J.M. Golden, Opt. Eng. 46, 5 (2007). https://doi.org/10.1117/1.2741274

    Article  Google Scholar 

  40. 40.

    V. Vavilov, D. Nesteruk, V. Shiryaev, A. Ivanov, W. Swiderski, Russian J. Nondestruct. Testing 46, 3 (2010). https://doi.org/10.1134/S1061830910030010

    Article  Google Scholar 

  41. 41.

    V. P. Vavilov, Proceedings of SPIE—The International Society for Optical Engineering, (1990), Editor S. A. Semanovich, Ed., 1313, 1, pp. 178–182, ISBN 0819403644

  42. 42.

    V. Dattoma, F.W. Panella, A. Pirinu, A. Saponaro, Mater. Today (2020). https://doi.org/10.1016/j.matpr.2020.02.915

    Article  Google Scholar 

  43. 43.

    M. Berke, Nondestructive Material Testing with Ultrasonics—Introduction to the Basic Principles, NDT.net, 2000, Vol. 5, 9

  44. 44.

    E. Ginzel, B. Pedersen, NDT.net Journal, e-Journal of Nondestructive Testing (NDT), 20, 5 (2015), ISSN 1435-4934, https://www.ndt.net/article/ndtnet/2015/6_Ginzel.pdf

  45. 45.

    V.P. Vavilov, P.G. Bison, E.G. Grinzato, Thermosense XVIII: An International Conference on Thermal Sensing and Imaging Diagnostic Applications, 2766 (1996) https://doi.org/10.1117/12.235396

  46. 46.

    S. Sojasi, F. Fariba Khodayar, F. Lopez, C. Ibarra-Castando, X. Maldague, V.P. Vavilov, A.O. Chulkov, Conference: NDT in Canada 2015 Conference, at: Edmonton, AB (Canada). https://www.ndt.net/events/NDTCanada2015/app/content/Paper/27_Sojasi.pdf. Accessed 23 May 2020

  47. 47.

    V. Yanisov, L. Yanisov, Soiviet J NDT, 12 (1984)

  48. 48.

    M.A. Omar, G. Belal, A.J. Salazar, S. Kozo, NDT & E Intern. 40, 1 (2007). https://doi.org/10.1016/j.ndteint.2006.07.013

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. W. Panella.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panella, F.W., Pirinu, A. Comparative Analysis of Thermal Processing Approaches for a CFRP Element Aided by UT Control. Int J Thermophys 41, 110 (2020). https://doi.org/10.1007/s10765-020-02690-z

Download citation

Keywords

  • Artificial defects
  • Composite material
  • Image processing
  • Lock-in thermography
  • Non-destructive controls
  • Pulsed thermography
  • Thermal contrast