Skip to main content
Log in

Thermoelectric Stability of Graphite-Based Thermocouples

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper describes the design of newly developed graphite-based thermocouples and the results of investigation of their thermoelectric stability up to temperatures of about 1950 °C in graphite-containing atmospheres. All investigated combinations of different graphite grades revealed considerable thermoelectric drifts above approximately 1600 °C. With the most promising combination of isostatically pressed carbon and glassy carbon as the sensitive elements, drift rates of less than 0.1 K·h−1 could be achieved in use at 1500 °C. This allows at least short-term use of the graphite-based thermocouples at specific applications where metallic thermocouples cannot be reliably used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Euramet TC-T Temperature Roadmap and Explanatory Notes: http://www.euramet.org/index.php?id=1652 (see also: Machin G., Bojkovski J., del Campo D., Dogan A. K., Fischer J., Hermier Y., Merlone A., Nielsen J., Peruzzi A., Ranostaj J., Strnad, R., A European Roadmap for Thermometry, Int. J. Thermophys. 35, 385-394 (2014))

  2. P.A. Kienzi, Thermocouple Temperature Measurement (Wiley, Hoboken, 1973) (ISBN 0-471-48080-0)

    Google Scholar 

  3. O. Ongrai, J.V. Pearce, G. Machin, S.J. Sweeney, AIP Conf. Proc. 1552, 504 (2013). https://doi.org/10.1063/1.4821392

    Article  ADS  Google Scholar 

  4. A. Ulanovskiy, F. Edler, J. Fischer, P. Oleynikov, P. Zaytsev, A. Pokhodun, Int. J. Thermophys. 36, 433–443 (2015). https://doi.org/10.1007/s10765-014-1780-4

    Article  ADS  Google Scholar 

  5. J.V. Pearce, F. Edler, C.J. Elliott, L. Rosso, G. Sutton, R. Zante, G. Machin, in 17th International Congress of Metrology (2015). https://doi.org/10.1051/metrology/2015008001

  6. N.R. Thielke, R.L. Shepard, TID-7586, pt 1, pp. 44–52 (1960)

  7. R.D. Westbrook, R.L. Shepard, U.S. Patent 2,946,835 (1960)

  8. E. Franks, Temperature, its Measurement and Control in Science and Industry, Part 2, vol 3 (Reinhold Publishing Corp., New York, 1962), p. 189

    Google Scholar 

  9. N.V. Zuikov, et al., Teplofizika Vysokikh Temperatur 3, 815 (1965) (in Russian)

    Google Scholar 

  10. E. Lenz, S. Haupt, F. Edler, P. Ziolkowski, H.F. Pernau, Phys. Status Solidi C 9, 2432–2435 (2012). https://doi.org/10.1002/pssc.201200305

    Article  ADS  Google Scholar 

  11. F. Edler, S. Haupt, TM Technisches Messen 84, 779 (2017). https://doi.org/10.1515/teme-2017-0073

    Article  Google Scholar 

  12. R.E. Franklin, Proc. R. Soc. A 209, 196–218 (1951)

    Article  ADS  Google Scholar 

  13. F. Edler, K. Anhalt, J. Hartmann, in Proceedings of the Tempmeko 2004 (Cavtat), ed. by D. Zvizdic, p. 873 (2005)

Download references

Acknowledgements

This work was carried out as part of a European Metrology Programme for Innovation and Research (EMPIR) project to enhance process efficiency through improved temperature measurement, ‘EMPRESS’. EMPIR is jointly funded by the EMPIR participating countries within EURAMET and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Edler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edler, F., Haupt, S. Thermoelectric Stability of Graphite-Based Thermocouples. Int J Thermophys 39, 126 (2018). https://doi.org/10.1007/s10765-018-2449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2449-1

Keywords

Navigation